
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano,
Italy

Tel: +39 04710 16000, fax: +39 04710 16009, http://www.inf.unibz.it/krdb/

KRDB Research Centre Technical Report:

Techniques for query rewriting based on
interpolation

Nhung Ngo

Affiliation KRDB Research Center, FUB

Corresponding author Ngo Thi Phuong Nhung
maxnhong85@gmail.com

Keywords query rewriting, interpolant, defiability, interpolation
Number KRDB10-3
Date 04-08-2010
URL http://www.inf.unibz.it/krdb/

Acknowledgments

First, I would like to give my great thanks to my supervisor Prof. Enrico Franconi at the
KRDB Research Center for his kind supervision of this thesis. Without his support and advices,
this research would have never been possible.

My special gratitude also goes to the EMCL consortium for the two year Erasmus Mundus
scholarship which gives me not only a chance to study under an advance education but also a
great time to enjoy Europe.

I want to thank all of my friends in Vienna and Bolzano, who are always beside me and
have made my two years in this master program become one of the most beautiful periods in my
life. I would like to thank my colleges in Free University of Bolzano also, in particular Evgeny
and Olga for many useful discussions and advices. I wish to send my special thanks as well to
my closed friends in Vietnam for keeping our friendships over the Internet.

Last but not least, my deepest gratitude goes to my beloved family, my mothers and fathers,
my husband, my brothers for always encouraging me, taking care of me and understanding me.

Contents

1 Introduction 2
1.1 Motivations . 2
1.2 Previous works . 4
1.3 Contribution of the Thesis . 5
1.4 Organization of the Thesis . 5

2 Preliminaries 7
2.1 First order logic . 7

2.1.1 Syntax . 7
2.1.2 Semantic . 8
2.1.3 Normal forms . 9

2.2 Theorem proving in First order Logic . 9
2.2.1 Tableaux . 10
2.2.2 Resolution with unification . 10

2.3 Description logic . 12
2.3.1 Syntax . 12
2.3.2 Semantic . 13
2.3.3 Reasoning in Description Logic . 14

2.4 Database and Query . 15
2.4.1 Database and constraints . 15
2.4.2 Query . 15
2.4.3 Domain Independence . 16
2.4.4 Safe range . 16

3 Interpolant 18
3.1 Craig’s interpolant . 18

3.1.1 The theorem . 19
3.1.2 The proof . 19
3.1.3 Related theorems . 22

3.2 Constructing Craig’s interpolant . 22
3.2.1 Tableaux based method . 22
3.2.2 Interpolation for ALC concepts . 26
3.2.3 Resolution based methods . 30

4 Query rewriting framework 33
4.1 General framework . 33

4.1.1 Definability of a query . 34
4.1.2 Query rewriting . 35
4.1.3 Query answering . 36

4.2 Safe range rewriting . 38
4.2.1 Ground safe range . 38
4.2.2 Tableau based rewriting . 39
4.2.3 From ground safe range to safe range . 41

4.3 Applied framework for ALC . 42
4.3.1 DBox . 42

3

4.3.2 The framework . 42
4.3.3 Ground safe range theorem . 43

4.4 Applied framework for guarded fragment . 44

5 Rewriting tool 45
5.1 Requirements . 45

5.1.1 System features . 45
5.1.2 External interface requirements . 45
5.1.3 TPTP syntax . 46
5.1.4 Common Logic syntax . 46

5.2 Design and support tools . 47
5.2.1 Logic formula parser . 47
5.2.2 Prover9 . 48
5.2.3 Espresso . 50
5.2.4 Architecture . 50
5.2.5 Package diagram . 51

5.3 Implementation . 52
5.3.1 Algorithms . 52
5.3.2 Sample codes . 53

5.4 Usage notes . 54
5.4.1 Setup . 54
5.4.2 Tool manipulations . 55

6 Conclusion and future works 57
6.1 Domain independence . 57
6.2 Safe range for resolution method . 58
6.3 Optimization . 58
6.4 Decidable fragment . 58

A GUI screenshots 59

B Worked out examples 64
B.1 Check definability . 64
B.2 Compute interpolant . 65

B.2.1 Resolution based method . 65
B.2.2 Tableau based method . 65

B.3 Get rewriting . 66

Reference 67

List of Figures

1.1 Integrated system architecture [28] . 3
1.2 Three layers of a system . 4

4.1 Query rewriting process . 35

5.1 Interpreter for ‘all x (A(x))’ . 48
5.2 Ivy output of a Prover9 proof . 49
5.3 Rewriting tool architecture . 50
5.4 Package diagram . 51
5.5 Query rewriting window . 55

A.1 A successful scenario of the rewriting framework . 59
A.2 An example about wrong syntax of input formulas . 60
A.3 An example about correct syntax of output formulas . 60
A.4 An example of a consitent knowledge base . 61
A.5 An example of a safe range query . 61
A.6 A positive result for Nash’s example in [22] . 62
A.7 Rewriting of Nash’s example in [22] and its safe range property 63

5

List of Tables

2.1 Semantic of ALC . 13

3.1 Interpolant property in some FO fragments . 20
3.2 Some interpolant results from [23] . 22
3.3 Biased completion rules for ALC . 27
3.4 Closed branch rules for ALC . 27
3.5 Propositional rules for ALC . 28
3.6 First order rules for ALC . 28
3.7 Non-atomic closed branch rules for ALC . 29
3.8 Lazy unfolding completion rules for ALC . 29
3.9 Lazy unfolding interpolant rules for ALC . 30

6

Abstract

Query rewriting is an essential technique for query processing over database systems. In general,
query rewriting can be understood as a method to reformulate a query into another form to
make the query processing more convenient in the sense of computing costs, giving expected
answers and so on. Among many query rewriting approaches, in this master thesis, we will
study a recently proposed rewriting framework [26] [4] based on Craig’s interpolant [9] and
Beth’s definability theorem. According to the framework, a query can be rewritten using the
language corresponding to a set of database predicates implicitly defining the query. In the other
words, from the proof of a valid formula implied by implicitly definability of a query, we can
construct a Craig’s interpolant which reflects the rewritten query. Related to a fundamental
characteristic of a query, the framework requires the domain independence of the rewriting.
Based on these researches, we shall first try to get a rewritten query in a syntactic restriction
of domain independence named safe range, which is the crucial criteria to transform a first
order query to a SQL query. Besides, we will focus on some methods to construct intepolants
from proofs generated by automated theorem provers. At the last step, which is also the goal
of our work, a query rewriting tool that automatically performs the rewriting process will be
implemented on top of a famous theorem prover named Prover9.

1

Chapter 1
Introduction

Nowadays, with the help of many database techniques from organizing, storing data to query
processing, people have had chances to query over more and more complicated system and get
expected answers in a short time. In terms of query answering and query optimization, query
rewriting is not only one of the most efficient approaches but also a very challenging one.

Looking at many researches and practical works in database and knowledge representa-
tion systems, one can see query rewriting has been applied almost everywhere. In database
management system, a query can be rewritten into a new form using less complicated opera-
tions, removing duplicated works or using offline-computed views in order to speed up query
answering. By means of integrated systems, we need to reformulate a query by a set of views
corresponding to the set of data sources. In semantic-driven systems, users can query at seman-
tic level while data is stored in a relational database, then to answer, systems should interpret
the query into data level. Therefore, query rewriting is a general technique. In the other words,
depending on purposes, people can rewrite a query in various ways.

Considering methods for query rewriting based on the form of rewritten queries, we have
two types : syntactic rewriting where the rewriting process changes the syntactic form of the
query and language based rewriting where the languages of the original query and rewritten
query are different. In this master thesis, we shall do research on a method belonging to the
second type. Intuitively, given a query which is written in the language A, a language B and a
knowledge base over the language A∪B, based on the method, we shall first determine whether
one can use the language B to rewrite the query or not. If the answer is ‘yes’, we show the
rewritten query. More precisely, this method contains two following steps :

• Prove the ability of rewriting using implicit definability of the query over the language B.

• If the query is implicitly definable, compute the rewritten query based on Craig’s inter-
polant of valid implication derived by implicitly definability.

1.1 Motivations

Let us consider the first motivation for the mentioned method with a simple example shown
below. Assume we have a knowledge base containing the following axioms :

∀x(Student(x)→ (GradStudent(x) ∨ UnderGradStudent(x)))

∀x(GradStudent(x)→ Student(x))

∀x(UnderGradStudent(x)→ Student(x))

∀x(GradStudent(x)→ ¬UnderGradStudent(x))

and in the database, there are 2 tables : Student and UnderGradStudent. What will happen
if a user passes the following query to the database: ‘give me all graduate students’. In fact,

2

CHAPTER 1. INTRODUCTION

from the knowledge base, you can easily see that a graduate student is a student which is not
an undergraduate one. Therefore, one just needs to query : ‘give me all students which are not
undergraduate ones’ in order to have expected answer.

Figure 1.1: Integrated system architecture [28]

The example above shows us multiple perspectives. From the perspective of query opti-
mization, the idea of implicit definability has been implemented purely in DB2 named ‘implied
predicates’ [17]. According to the description of IBM, if in the query you have: A = B, B = C,
DB2 will add A = C into the query in order to find the best plan for query answering because
possibly doing join B = C and A = C is less expensive than A = B and B = C. Back to our
example, if the user wants to ask a query which contains GradStudent, we can apply the same
technique to rewrite the query. Consequently, the method can be implemented as a module in
RDMS where the system knows that accessing to some tables, views is easier than others and
then try to use them to rewrite the query.

From another perspective, we can take into account integrated systems, which nowadays
are more and more important in the age of information explosion. Consider an architecture of
integrated systems in figure 1.1 where a mediated schema is built from local schema. As we
have already mentioned above, there is one usual way to answer the query such as rewrite the
query in terms of views corresponding to data sources. If we revisit the example and assume
that the mediated schema is described by the knowledge base where there are two data sources
such as : UnderGradStudent and Student , then the query GradStudent(x) can be answered
by rewriting it to Student(x)∧¬UnderGradStudent(x). In general, with this type of systems,
if the mediate schema is well designed, all queries should be implicitly definable over views.
Therefore, we can apply the method to find the rewritten queries.

Furthermore, let us see the example as in a typical three layer system in Figure 1.2 where the
conceptual constraints can be expressed using ontology languages corresponding to the knowl-
edge base and data is in fact stored in above tables: Student and UnderGradStudent. This
system allows users querying over conceptual language (contains Student, GradStudent and
UnderGradStudent) which is actually richer than the language describing database at logical
level (contains Student and UnderGradStudent). Consider the query GradStudent(x), apply-
ing the method, one can rewrite the query into Student(x) ∧ ¬UnderGradStudent(x), which
can be easily transformed to SQL query over relational database and then receive expected
answer based on semantics of original query. In fact, from this point of view, this method

3

CHAPTER 1. INTRODUCTION

can support as well the database designing process where designers can check which table is
redundant (if its corresponding predicate is implicitly definable from others) and is defined as
a view (as a combination of others).

Figure 1.2: Three layers of a system

The second motivation for the method is that it is feasible. As we have already mentioned,
this method contains two steps where the first step can be reduced to the validity of a first order
formula. In general, this problem is undecidable. However, we know that in most systems, one
just considers some decidable fragments of first order logic such as description logic (which is
one of the most powerful logic for knowledge representation). Furthermore, with the develop-
ment of automated theorem proving techniques, one can use some theorem provers to prove the
validity of a formula automatically. In the second step, we need to calculate the interpolant
of a valid implication. Fortunately, as a consequence of Craig’s theorem [9], there is always a
method to compute interpolant from tableau based proof or resolution based proof of validity
or unsatisfiability.

1.2 Previous works

The idea of using Craig’s interpolant and Beth’s definability for query rewriting were mentioned
in several recent researches. In this section, we would like to summary the ideas and results of
these researches while the detail framework will be considered later.

In the paper [26], the method is applied for query answering in Description Logic ontologies
with DBox while a DBox is syntactically similar to ABox but has different semantics such that
the extension of DBox predicates is nothing more than DBox assertions. In the other words, a
DBox behaves like a relation database where DBox predicates are tables and Dbox assertions
are tuples. Ontologies considered in the paper are general ALC TBoxes and queries are ALC
concept expressions. According to the paper, one can check whether the answer to a query
under an ontology is determined only by DBox or not using normal ALC reasoning services.
If it is the case, a rewriting of the query in terms of DBox predicates will be constructed.
In fact, the problem of finding rewritten query in this case coincides with the problem of
finding interpolant of ALC concepts over TBoxes. Therefore, a complete algorithm to compute
interpolant based on an adaptation of standard tableaux techniques were introduced as well
as its extension for common tableaux optimization techniques. Besides, since rewritten queries
are also ALC concepts, we can easily transform them to SQL queries which can be answered
by normal relational database techniques.

In the next paper [4], a query rewriting framework over first order constraints were taken

4

CHAPTER 1. INTRODUCTION

into account with the ultimate goal that one can apply standard relational techniques to answer
the rewritten query. In order to fulfill this goal, this paper gave some conditions to reduce the
problem of query answering over a knowledge base and a database to the problem of model
checking over the database. Besides, the paper also showed important applications of the
framework such as: rewriting of a conjunctive query over connected conjunctive views where
the problem of rewriting existence is partially decidable; and rewriting of a query over databases
which have constraints expressed in the guarded fragment of first order logic.

1.3 Contribution of the Thesis

Before turning to the contribution of the thesis, let us summarize the ultimate goal of our
efforts. In general, we want to develop a rewriting tool such as :

• The rewritten query can be executed by standard relational engines effectively.

• This tool can be used as a research tool to explore more properties of the rewritten query
with the corresponding input.

• This tool is built on top of some theorem provers and provides some services that can be
integrated as a rewriting module in application systems.

From foundations of databases [1], it is clear that the problem of checking whether a given
query is domain independent or not is undecidable. Therefore, in this thesis we shall focus on a
syntatic condition to ensure domain independence named ‘safe range’. It has been agreed that
this restriction does not impact the expressiveness of a query such as for all domain independent
query, there is a way to construct an equivalent one, which is safe range. Moreover, a first order
query can be transformed to a relational algebra query if and only if it is safe range. With this
motivation, during this research we shall find conditions of the knowledge base and the original
query to have a safe range rewritten query instead of domain independent one. As a negative
result, a hypothesis which states that if the input is safe range then so is the output will not
hold. However, with these conditions of input, we still have a relaxed property for the output
named ‘ground domain independent ’. With this property, first we will show that we can have a
safe range equivalent query by conjunction with universal relation for each of its free variables.
In the next step, we shall point out if we add more constraints to the knowledge base, there
will be a less expensive way to change the rewritten query to a safe range one. Unquestionably,
these constraints should be feasible in real applications.

In term of tool implementing, we shall describe a rewriting tool which takes a knowledge
base, an original query and a set of database predicates as its input, and determines whether
the query is rewritable or not. If that is the case, it will return a rewritten query. In order to
perform this task, a research on how to compute interpolant of two formulas will be carried out
as well and a method based on resolution proof returned by Prover9 - a theorem prover will be
implemented.

1.4 Organization of the Thesis

This thesis contains 6 chapters : Introduction, Preliminaries, Computing interpolant, The
framework, The query rewriting tool and Conclusion. It also has two appendix sections for
GUI screenshots and worked out examples. Summary of these chapters are following:

• Introduction: This chapter gives readers a brief view of our research throughout mo-
tivation, previous works and contribution sections. It contains a global summary of the
thesis as well.

• Preliminaries: All background knowledge for the thesis such as: first order logic, au-
tomated theorem proving techniques, queries, databases, domain independence and de-
scription logic will be recalled in this chapter.

5

CHAPTER 1. INTRODUCTION

• Interpolant: This chapter focuses on Craig’s interpolant and its properties. Methods to
compute interpolant automatically are studied as well in this part.

• The framework: This chapter reiterates a general framework based on first order logic
mentioned in the paper [4] and its application for description logic [26]. All the results
related to safe range property are also mentioned here.

• The query rewriting tool: The features of the tool and its services are described here
in detail. We mention as well about necessary softwares for the tool in this chapter.

• Conclusion: As usual, this chapter sums up our work, its advantages - disadvantages
and discusses about future researches.

6

Chapter 2
Preliminaries

This chapter will provide the background knowledge related to our topic such as first order
logic and its theorem proving techniques. We shall recall as well description logic, a decidable
fragment of first order logic where our framework can be applied. Furthermore, since our
framework is for query rewriting, some foundations of databases such as: database, query, and
domain independence will be reiterated at the last section.

2.1 First order logic

Within the thesis, knowledge bases and queries are in first order logic with equality but without
functions. However, we shall consider also the resolution method for theorem proving where
functional symbols might appear after Skolemization. Therefore, in this section, we are going
to look at syntax and semantic of standard first order logic where functional symbols possibly
occur.

2.1.1 Syntax

All expressions in first order logic can be expressed using the language which is the disjunction
of 5 disjoint sets of symbols such as: set of variables V, set of constants C, set of functional
symbols F with associated arities, set of predicate symbols P with associated arities and the
set of logical symbols {∀,∃,∧,∨,→,¬,=,↔}. Basing on these symbols, we have the following
concepts:

a) Term : A constant in C is a term. A variable in V is a term. Moreover, with any f in F ,
f(t1, ..., tn) (n ≥ 1) is a term where t1, ..., tn are term. The term f(t1, ..., tn) can also be
called function, and the arity of this function is n

b) Atomic formula : An atomic formula is a formula of the form t1 = t2 where t1, t2 are
terms or P (t1, ..., tn) where P is a predicate symbol in P with arity n ≥ 1 and t1, ..., tn are
terms

c) Formula:

• Atomic formula is a formula

• If φ is a formula then so is ¬φ
• If φ and ψ are formulas then so is φ ∧ ψ
• If φ is a formula then so is ∃xφ for any variable x

• The formula φ ∨ ψ is a shorten representation of the formula ¬(¬φ ∧ ¬ψ)

• The formula φ→ ψ is an alternative representation of the formula ¬φ ∨ ψ
• The formula φ↔ φ is a shorten formula of (φ→ ψ) ∧ (ψ → φ)

7

CHAPTER 2. PRELIMINARIES

• The formula ∀xφ is an alternative representation of ¬∃x¬φ

Related to variables in a formula, they also define :

d) The set of free variables in formula φ denoted by free(φ) is a subset of all variables in φ
such as:

• If φ is atomic then free(φ) is the set of all variables occurring in φ

• If φ = ¬ψ then free(φ) = free(ψ)

• If φ = ψ ∧ θ then free(φ) = free(ψ) ∪ free(θ)
• If φ = ∃xψ then free(φ) = free(ψ)− {x}

e) A sentence or a closed formula is a formula φ such that free(φ) = ∅

At general level, we have :

f) A signature is the set of constant, functional and predicate symbols with corresponding
arities. Given a formula φ, σφ is the signature of φ if it is a signature containing only
constants, function symbols and predicates symbols in φ. We also can say that a signature
is the set of non-logical symbols.

g) Sometimes, we also use ‘language’ with the same meaning as signature.

2.1.2 Semantic

Semantic of a first order formula is given by the notion of interpretations. In the other words,
throughout an interpretation and its corresponding evaluation function, we will know the truth
value (true, false) of a first order formula.

a) Interpretation : An interpretation I is a tuple (D,S, va) where

• Domain D is a non empty set of objects

• S is a signature mapping that:

– S(c) ∈ D for all constants c ∈ C
– S(f) is a function from Dn to D where f ∈ F is a function with arity n

– S(P) is a relation from Dn to {true, false} where P ∈ P is a predicate with arity
n

• Variable assignment va maps each variable v ∈ V to an element of D

b) Evaluation function : An evaluation function eI corresponding to I evaluates terms and
formulas as follows:

• eI(t) where t is a term

– If t is a variable then eI(t) = va(t)

– If t is a constant then eI(t) = S(t)

– If t if a function f(t1, ..., tn) then eI(t) = (S(f))(eI(t1), ..., eI(tn))

• eI(P (t1, ..., tn)) = (S(P))(eI(t1), ..., eI(tn))

• eI(t1 = t2) = true iff eI(t1) = eI(t2)

• eI(φ)

– If φ = ¬ψ then eI(φ) = true iff eI(ψ) = false

– If φ = ψ ∧ θ then eI(φ) = true iff eI(ψ) = true and eI(θ) = true

– If φ = ∃xψ then eI(φ) = true iff for some d ∈ D, eI′(ψ) = true where I ′ =
(D,S, v′a) and v′a is the same with va except that v′a(x) = d.

c) Formula φ is satisfiable if there is an I such that eI(φ) = true. In this case, I is a model of
φ denoted by I |= φ

8

CHAPTER 2. PRELIMINARIES

d) Formula φ is valid iff for all I eI(φ) = true

e) Related to sentences, we can define M = (D,S) and say that M is a model of a formula
φ iff for all variable assignment va, I = (D,S, va) is a model of φ. In the other words, the
semantic of sentences just depend on the domain and interpretation function. Therefore, for
the case of of sentences we can call I = (D,S) is an interpretation.

f) A set of sentences will be called ‘theory ’. A theory is consistent iff there is an interpretation
which is a model of all sentences in the theory. Given a theory T and a formula φ, we say
that T entails φ denoted by T |= φ if all models of T are models of φ.

2.1.3 Normal forms

In some applications, before being processed a first order formula has to be transformed to a
normal form. In this thesis, we will concern below normal forms

a) Negation normal form (NNF) : A formula is in negation normal form iff it does not
contain implication or equivalent symbols and the negation symbol appears only in front of
its atomic formulas. In order to transform an arbitrary formula to negation normal form,
we have to apply the following rules :

(A→ B) −→ (¬A ∧B)

¬¬A −→ A

¬(A ∧B) −→ (¬A ∨ ¬B)

¬(A ∨B) −→ (¬A ∧ ¬B)

¬(∀xA) −→ (∃x¬A)

¬(∃xA) −→ (∀x¬A)

b) Prenex normal form (PNF) : In prenex normal form, all quantifiers appear at the be-
ginning of the formula. Below are rules to transform a formula to its prenex normal form.
Notice that before apply these rules, the variables in formula should be renamed such that
neither a variable appears as both free and bounded nor a variable bounded by more than
one quantifier.

(∀xA) ∧B −→ ∀x(A ∧B) (∀xA) ∨B −→ ∀x(A ∨B)

(∃xA) ∧B −→ ∃x(A ∧B) (∃xA) ∨B −→ ∃x(A ∨B)

¬∀xA −→ ∃x(¬A) ¬∃xA −→ ∀x(¬A)

c) Prenex conjunctive normal form (PCNF) : When a formula is in prenex normal form,
we can transform its quantifier-free part to conjunctive normal form as in propositional logic
to have prenex conjunctive normal form by first transform it into negation normal form and
then apply the Demorgan’s law: A ∧ (B ∨ C) −→ (A ∧B) ∨ (A ∧ C)

2.2 Theorem proving in First order Logic

Theorem proving problem in first order logic can be understand as: given a theory and a first
order closed formula, prove that the theory entails the formula. It is easy to see that we can
reduce this problem to the problem of checking whether a a first order formula is unsatisfiable
or not. Even though in the case of first order logic this problem is undecidable, there are some
typical sound and complete structural calculuses that we can follow such as: Natural Deduction
or Sequence Calculus. However, in this section, instead of discussing about these calculuses, we
shall focus on two important improved techniques for automated theorem proving : Tableaux
and Resolution which are also sound and complete.

9

CHAPTER 2. PRELIMINARIES

2.2.1 Tableaux

Tableaux technique is one of the most simply techniques to check the satisfiability of a formula
since it is close to the formula’s semantic. Its basic idea is from the cut-elimination theorem
of structural proof theory. This method has been applied widely in some popular fragments of
first order logic like description logic or expanded to modal logic and higher order logic.

In order to apply tableaux method, the input formula should be in negation normal form.
In general, given a formula, a tableau which basically is a tree reflecting all the possible models
of the formula, is built from the following completion rules [12]:

• And-rule :
φ ∧ ψ
φ
ψ

means that a model of a conjunction should be the model of each

conjunct.

• Or-rule:
φ ∨ ψ
φ | ψ

means that a model of disjunction should be a model of one

disjunct. Therefore, in this case two branches of this tableau are generated.

• Forall-rule:
∀x.φ
φ{x/t}
∀x.φ

says that a model of an universal quantified formula is also

model of the formula where a quantified variables is substituted with any term which
appear in the tableau.

• Exists-rule:
∃x.φ
φ{x/a}
∃x.φ

says that a model of an existential quantified formula is also

model of the formula where a quantified variable is substituted with a new constant.

• Equal-rule 1:
φ

t = t
means that a model of a formula should be a model of the

equation t = t for every term t occurring in this formula.

• Equal-rule 2:

φ(t)
t = u

φ(u)
says that if an interpretation satisfies a formula and an equa-

tion between two terms, it should satisfy the formula where one term is substituted by
another one.

In the tableau, a branch is called closed iff it contains φ and ¬φ. A branch is called completed
iff there is no more applicable rule on it. The tableau construction process will stop when all of
its branches are closed or completed. At this time, the corresponding formula is unsatisfiable
iff all branches are closed. A completed branch (if have) will reflect a model of the formula.
Notice that this construction process does not always terminate, then in this case we cannot
decide the satisfiability of the formula.

2.2.2 Resolution with unification

In this section, we shall consider another method for automated theorem proving named resolu-
tion where the fundamental idea is based on Herbrand’s theorem and DavisPutnam algorithm
[10]. Using this method, a theorem will be proved by refutation such that its negation will be
first transformed to a set of clauses, then using resolution, factoring and paramodulation rules
to generate new clauses until an empty clause (a contradiction) is created. Notice that the
clauses generating strategy is very important in practical provers since it decides the length of
proofs. We can list here some popular strategies such as : breadth first strategy, set of support
strategy [30], unit preference strategy [29], linear input form strategy. However, we shall not
go into detail for these strategies but only consider theoretical foundation of the method.

10

CHAPTER 2. PRELIMINARIES

a) Skolemization
Skolemization is a process of removing existential quantifiers from a prenex normal form
formula. Assume that we have a PNF formula :

φ = Q1x1Q2x2....Qnxnψ(x1, ..., xn)

For each Qi such as Qi = ∃ and Q1, .., Qi−1 are ∀s, we replace xi by f(x1, ..., xi−1) in ψ. In
the case i = 0, we just need to replace xi by a fresh constant c. The term corresponding
to f(x1, ..., xi−1) or c is called Slokem term. As we see, the formulas after and before
Skolemization are not equivalent. Nevertheless, they are sat-equivalent, which means that if
one formula is satisfiable, then so is the other.

b) Clause form
As we have already mentioned, in order to apply resolution refutation method a formula has
to be transformed to a set of clauses. More precisely, each clause has to be the disjunction
of literals and does not contain any quantifier. Here are the steps to generate clauses from
a formula :

• Convert the formula to prenex conjunctive normal form

• Skolemization to remove existential quantifiers. Formula at this step called Slokem
prenex normal form

• Drop all universal quantifiers

• Each clause is a conjunct

c) Resolution rule
Since the first time introduced by John Alan Robinson in 1965 [25], resolution rule has
been applied broadly in propositional theorem proving. Given two clauses C ∨ L and
D ∨ ¬L where C,D are clauses and L is an atomic formula, we have the following rule

: C ∨ L D ∨ ¬L
C ∨D In this case, we say C ∨ D is resolvent of C ∨ L and D ∨ ¬L and

L is their pivot literal. It’s obvious that this rule is sound since the resolvent is the logic
consequence of resolved clauses.

d) Herbrand interpretation and Herbrand theorem
Herbrand theorem is a very important result in first order logic because it gives a way to
reduce first order unsatisfiability problem to propositional one. For that reason, it also
is a crucial theoretical foundation for automated theorem proving. General speaking, the
theorem says that only Herbrand interpretation is enough for checking validity of a first order
formula. Given a signature Σ, a Herbrand interpretation over Σ is a tuple I = (D,S, va)
where:

• D named Herbrand universe defined as: every constants in Σ is in D. If f is a n-ary
function in Σ then f(t1, ..., tn) is in D where t1, ..., tn are in D.

• S interprets each constant to itself. For each n-ary function f (S(f)) (t1, .., tn) =
f(S(t1), ..., S(tn)). For each n-ary predicate symbol P , S(P) is mapped to a n-ary
relation over Herbrand universe.

• va assigns each variable to a term in D

A ground instance of a clause C is C where all variables are replaced by Herbrand term.
With these definitions, the Herbrand theorem can be stated briefly as follow :

Theorem 2.1 (Herbrand theorem) A first order formula φ is unsatisfiable iff there is a
finite set of ground clauses of φ’s clause form that is unsatisfiable in propositional calculus.

Related to the proof of this theorem, one can refer to [19]. Apply this theorem, we have a
method named ground resolution where the proof of an unsatisfiable formula is constructed
by resolution from a set of its ground clauses .

11

CHAPTER 2. PRELIMINARIES

e) Unification
Unification of two terms is a process of finding substitution such that under this substitution
two terms are identical where a substitution is a set of mappings variables to terms. Two
terms are called unifiable iff exists such substitution and this substitution is called unifier In
general, there might be more than one unifier between two unifiable terms but people just
concerns about the most powerful one named most general unifier. In unification theory,
the most general unifier of 2 terms t1, t2 is the unifier π such that for all unifiers π′ of these
terms, there is a substitution πt such that : (t1)π′ = ((t1)π)πt = ((t2)π)πt = (t2)π′ where
(t)π is the result term of term t after apply the substitution π. Instead of terms, we also
have the same definition for formulas.
In first order logic, the unification problem is decidable. More precisely, there is an algorithm
telling us that two given terms are unifiable or not, if the answer is yes, it returns the most
general unifier between them. The simplest algorithm was proposed by John Alan Robinson
[25] and applied in his first order resolution theorem prover.

f) General Resolution with factoring and paramodulation
With the notion of unification, we can generalize the resolution rule as: given two clauses
C ∨ L and D ∨ ¬L where L and L′ are unifiable and π is their most general unifier,
C ∨ L D ∨ ¬L

(C ∨D)π
In fact, in first order logic without equality, the proof system with only general resolution
rules is not complete. In order to have a complete system, we also need factoring rule which
can be described as follow : given a clause C ∨ L ∨ L′where L and L′ are unifiable and π is

their most general unifier, then C ∨ L ∨ L′
(C ∨ L)π

In first order logic with equality, thing becomes more complicated. Fortunately, thanks to
paramodulation, we still have a complete system. Given two clauses C ∨ s = t and L(s)∨D
where L(s) is a literal contains s. s and t are unifiable by the most general unifier π,

we have the following paramodulation rule:
C ∨ s = t L(s) ∨D

(C ∨ L(t) ∨D)π
where L(t) is L with

replacement of s by t

2.3 Description logic

Description logic (DL) is a well-known fragment of first order logic together with the develop-
ment of knowledge representation system because it provides the logical foundation for ontolo-
gies and semantic web. In general, basic description logic is decidable and expensive enough for
information system modeling. DL describes a system throughout concepts, roles, individuals
and their relationship in the system where an individual is an object in the system, a concept
is a class of objects and a role is a relation between two objects.

2.3.1 Syntax

The language of DL in general often contains two disjoint sets of symbols for atomic concepts and
atomic roles which corresponding to symbols of unary predicates and binary predicates. It also
contains a set of symbols for concept and role construction such as : negation(¬), conjunction
(u), disjunction (t), existence (∃), universal quantification (∀), cardinality restrictions (≥n,≤n)
as well as a set of symbols for the relation between concepts and between roles such as :
subsumption (v). Almost description languages also contain ⊥ and > symbols as special
concepts. Depend on the syntax for building concepts and roles, we have different description
logics where the naming convention [3] for each type is following :

• AL Basic DL with atomic negation, concept intersection, value restriction and limited
existential quantification,

• F Functional properties.

• E Full existential qualification

12

CHAPTER 2. PRELIMINARIES

• U Concept union.

• C Complex concept negation.

• S An abbreviation for ALC with transitive roles.

• H Role hierarchy

• R Limited complex role inclusion axioms; reflexivity and irreflexivity; role disjointness.

• O Nominals.

• I Inverse role properties.

• N Cardinality restrictions

• Q Qualified cardinality restrictions

• (D) Use of datatype properties, data values or data types.

Let us now consider the detail syntax of ALC where our framework is fully applied. Let NC
and NR be sets of concept and role names. A set of concepts in ALC is the smallest set C which
fulfills :

• If C ∈ NC ∪ {⊥,>} then C ∈ C

• If C,D ∈ C then C tD and C uD are in C

• If C ∈ C then so are ∀R.C and ∃R.C where R ∈ NR

2.3.2 Semantic

With the above syntax, the semantic for ALC is given by interpretation I = (∆I , .I) where ∆I

is a nonempty set and .I is a function that map a concept to a subset of ∆I as in the table 2.1
Under above interpretation I, a concept C is consistent iff CI 6= ∅. An axiom in ALC is written

Concept Semantic
A AI ⊆ ∆I

R RI ⊆ ∆I ×∆I

> ∆I

⊥ ∅
C uD CI ∩DI

C tD CI ∪DI

¬C ∆I\CI
∃R.C {x|exists y such that R(x, y) ∧ C(y)}
∀R.C {x|forall y R(x, y)→ C(y)}

Table 2.1: Semantic of ALC

in the form C v D named C subsumes D or C ≡ D where C ≡ D means C v D and D v C .
An interpretation I satisfies axiom C v D iff CI ⊆ DI and as a consequence, I satisfies C ≡ D
iff CI = DI .

A Tbox is a finite set of axioms. A interpretation I is a model of Tbox T iff it satisfies all
the axioms in T . An Abox in ALC is a set of assertions of the form C(a) or R(a, b) where C is a
concept and R is an atomic role. C(a) is satisfied by interpretation I iff aI ∈ CI and R(a, b) is
satisfied by interpretation I iff (aI , BI) ∈ RI . A interpretation I is said to be a model of Abox
A iff every assertion in A is satisfied by I. A knowledge base (KB) is tuple of (Tbox,ABox) and
an interpretation is said to be a model of KB iff it is a model of both Tbox and Abox. A KB is
satisfiable iff it has a model. Given a KB Σ and an axiom or an assertion φ, we say Σ |= φ iff
all models of Σ are models of φ.

13

CHAPTER 2. PRELIMINARIES

2.3.3 Reasoning in Description Logic

There are several type of reasoning services in DL such as :

• Concept satisfiability : given a knowledge base Σ and a concept C, check Σ |= C ≡ ⊥

• Subsumption : given a knowledge base Σ and 2 concepts C,D, check Σ |= C v D

• Satisfiability: given a knowledge base Σ, check whether Σ is satisfiable or not

• Instance checking: Check whether Σ |= C(a) or not where Σ is a knowledge base

• Retrieval: Find a such that Σ |= C(a) where Σ is a knowledge base

As we know, these reasoning services can be reduced to the satisfiability problem and this prob-
lem is decidable in DL. In most of DL reasoners, they often apply tableaux method mentioned
generally in the previous section. Now we shall look at the specific algorithm for ALC. Notice
that before apply the algorithm, all concepts have to be transformed to negation normal form
(NNF) such that negation appears only in front of atomic concepts. We can transform an
arbitrary concept to a NNF by following rules:

¬¬C −→ C

¬(C tD) −→ (¬C t ¬D)

¬(C uD) −→ (¬C u ¬D)

¬(∃R.C) −→ (∀R.¬C)

¬(∀R.C) −→ (∃R.¬C)

After transform all concepts to NNF, an empty tableau S will be initialized. Each branch of
the tableau during completion process contains expression of the form x : C or xRy where C
is a concept and R is a role. A branch is closed if it contains a clash {x : A, x : ¬A}. The
following completion rules are applied until all the branches of the tableau are closed.

• S −→u {x : C, x : D} ∪ S if x : C uD is in S and x : C, x : D are not both in S

• S −→t {x : C} ∪S or S −→t {x : D} ∪S if x : C tD is in S and neither x : C nor x : D
in S

• S −→∃ {xRy, y : C} ∪ S if x : ∃R.C is in S, y is a new variable, there is no z such that
both xRz and z : C are in S

• S −→∀ {y : C} ∪ S if x : ∃R.C is in S, xRy is in S, and y : C is not in S

In some practical reasoners, several optimization techniques for above algorithm have been
applied. We can list here some common techniques [3] such as :

• Non-atomic closure: In this technique, the definition of clash is relaxed to non-atomic
concepts such as {x : C, x : ¬C} is a clash even when C is a complex concept. If a branch
contains this clash, we will stop applying completion rules on it.

• Semantic branching: In semantic branching method, the semantic of disjunction is consid-
ered such that : if x : C tD is true then x : C is true or x : ¬C, x : D are true. Therefore,
the rule for t is slightly modified to: S −→t {x : C} ∪ S or S −→t {x : D,x : ¬C} ∪ S if
x : C tD is in S and neither x : C nor x : D in S

• Lazy unfolding and absorption: Regarding to this optimization method, first the TBox T
will be changed to a new Tbox T ′ = TG ∪ TU throughout absorption technique such that
TU contains only axioms in the form of A v C or A ≡ C where A is an atomic concept.
After that, all the axioms in TU are considered in new completion rules by an intuitively
idea such that: if x : A is in S and A v C in TU then x : C should be in S; if x : A is in
S and A ≡ C in TU then x : C is in S; if x : ¬A is in S and A ≡ C in TU then x : ¬C is
in S

14

CHAPTER 2. PRELIMINARIES

2.4 Database and Query

In this section, we shall recall some important definitions in database theory such as : database
instance, database constraints, query, domain independence, safe range in the language and
semantics of first order logic without functions.

2.4.1 Database and constraints

Let Σ is a signature containing an (infinite) set of constants C called database constants and
a set of predicates P. A database instance (or database in a shorten way) DB over Σ is a set
of assertions in the form of P (c1, ..., cn) where P is a n-ary predicate in P and c1, ..., cn are
constants in C. We also call a set of constants appearing in the database CDB is active domain
of DB and a set of predicates appearing in DB is the set of database predicates denoted by
PDB .

A database constraint of DB is an arbitrary first order sentence over Σ. A knowledge base
KB is a set of constraints. In relational database, all popular constraints are in of the form :
∀x1, ..., xkA1 ∧ ... ∧ An → ∃y1, ..., ylB1 ∧ ... ∧ Bm [8] where x1, .., xk, y1, ..., yl are variables and
A1, ..., An, B1, ..., Bm are database predicates or equalities. In detail, a constraint is :

• Full dependencies if there is no existential variables (l = 0)

• Tuple-generating dependencies (TGDs) if there is no equality atoms

• Equality-generating dependencies (EGDs) if m = 1 and B1 is an equality atom

• Functional dependencies (FDs) if n = 2 and it is an EGDs

• Join dependencies (JDs) if it is a TGDs with the left hand side conjunct is a multiway
join

• Denial constraints if l = 0 and m = 0

• Inclusion dependencies (INDs) if n = m = 1 and no equality atoms

In term of semantic, let us consider an interpretation I = (∆I , .I) where ∆I is a domain and
.I is an interpretation function. I is said that it embeds [4] database DB (written IDB) if for
every database constants c ∈ CDB cI = c and for every n-ary database predicate P ∈ PDB we
have (c1, ..., cn) ∈ P I if and only if P (c1, ..., cn) is in DB. Given database DB and knowledge
base KB, we say that DB satisfies KB iff there is an interpretation IDB which is a model of
KB. From this definition, we imply that the domain of IDB always contains CDB .

To generalize the characteristic of database constants, we have the notion of ‘standard name
assumption’ as follows:

Definition 2.2 (Standard name assumption) A set of constants A satisfies standard name
assumption if for every c ∈ A, for every interpretation I, cI = c

Using this notion, we can say that the set of database constants CDB satisfies standard name
assumption. In fact, in relational database, the assumption holds for the set of all constants.

2.4.2 Query

In general, a query is a first order formula. If the formula is closed, we say it is a boolean query.
Intuitively, the answer of a boolean query is a boolean value where the answer of non-boolean
query is a set of possible tuples of constants assigned to its free variables.

Given a query Q and X = {x0, ..., xn} is the set of its free variables, we will write it as
Q[X] or Q(x0, .., xn). We also define a substitution ΘCX is a total assignment which assigns each
variable in X to a constant in C. This definition holds as well for the case X = ∅. The answers
of Q[X] over the database DB and the knowledge base KB is the set

A = {ΘCX |for every IDB is a model of KB : IDB |= Q[X/ΘCX]}

In the case of boolean query, if A 6= ∅ the answer is yes and A = ∅ the answer is no.

15

CHAPTER 2. PRELIMINARIES

2.4.3 Domain Independence

Since a query can be an arbitrary first order formula, its answer can be infinite (since the
domain is not restricted to be finite) or depend on the domain. For example, the query Q(x) =
−Student(x) over the database Student(A), Student(B), with domain {A,B,C} we have the
answer {x = C} and with domain {A,B,C,D} we have the answer {x = C, x = D} and if
we change the domain to an infinite one, we will get an infinite answer. Therefore, in real
applications, they often discard this kind of query. In the other words, we are just interested
in domain independent queries where their answers do not depend in the domain.

The formal definition [4] of a domain independent query is given as follow :

Definition 2.3 (Domain independent query) A query is domain independent iff for every
pair of first order interpretation I and J which agree on the interpretation function (.I = .J)

and for every substitution Θ∆I∪∆J

X :

act− range(Θ∆I∪∆J

X) ⊆ ∆I and I,Θ∆I∪∆J

X |= Q[X]

iff

act− range(Θ∆I∪∆J

X) ⊆ ∆J and J,Θ∆I∪∆J

X |= Q[X]

where act− range(ΘC
X) is the active image of the mapping ΘC

X

Intuitively, since the answer of the query does not depend on the domain we can evaluate the
query over the smallest domain. In the case of relational database, the smallest domain is the
union of active domain CDB and CQ where CQ is the set of constants appearing in query Q.

In this thesis, we also need a weaker version of domain independence named ‘ground domain
independence’

Definition 2.4 A query Q[X] is ground domain independent iff for all substitution ΘC
X , Q[X/ΘC

X]

is domain independent.

Obviously, domain independence implies ground domain independence while the opposite di-
rection does not hold.

Example 2.1 The query Student(x) is both domain independence and ground domain in-
dependence while the query ¬Student(x) is just ground domain independent. The query ∀x
Teaching(x, y) is neither domain independent nor ground domain independent.

2.4.4 Safe range

Domain independence queries make the query evaluation problem be less complicated. Unfor-
tunately, given a query, the problem of checking whether the query is domain independent or
not is undecidable [1]. Therefore, in every query language, they often define a syntax restricted
subset of domain independent queries which is decidable and maintains the expression power.

In term of first order queries, safe range is a famous syntax restriction introduced by Codd.
Intuitively, a query is safe range if and only if its variables are bounded by positive predicates
or equalities. The following formal definitions [1] will explain what is a safe range query and
how to check whether a query is safe range :

Definition 2.5 (Safe range normal form) denoted by SRNF
A first order formula can be transformed to SRNF by following steps :

• Variable substitution: no distinct pair of quantifiers may employ same variable.

• Remove universal quantifiers

• Remove implications

• Push negation

• Flatten and/or

16

CHAPTER 2. PRELIMINARIES

Definition 2.6 (Range restriction of a formula) denoted by rr
Input : a formula ϕ in SRNF
Output : a subset of free(ϕ) or ⊥
Case ϕ of

• R(e1, ..., en) : rr(ϕ) = set of variables in e1, ..., en

• x = a or a = x : rr(ϕ) = {x}

• ϕ1 ∧ ϕ2 : rr(ϕ) = rr(ϕ1) ∪ rr(ϕ2)

• ϕ1 ∨ ϕ2: rr(ϕ) = rr(ϕ1) ∩ rr(ϕ2)

• ϕ1 ∧ x = y : rr(ϕ) = rr(ϕ1) if {x, y} ∩ rr(ϕ1) = ∅; rr(ϕ) = rr(ϕ1) ∪ {x, y} otherwise

• ¬ϕ1: rr(φ) = ∅

• ∃~xϕ1 : rr(ϕ) = rr(ϕ1)\~x if ~x ⊆ rr(ϕ1); rr(ϕ) = ⊥ otherwise

Note : ⊥ ∪ Z = ⊥ ∩ Z = ⊥\Z = Z\⊥ = ⊥

Definition 2.7 (Safe range) A formula ϕ is safe range iff rr(SRNF (ϕ)) = free(ϕ)

Example 2.2 Q(y) = ∀xStudent(x, y) is not safe range while Q(y) = ∃xStudent(x, y) is safe
range.

Related to expression power of safe range queries, below theorems hold :

Theorem 2.8 Safe range queries are domain independent

Proof
Sketch. Instead of proving directly, one can show that every first order safe range query can
be transformed to a relational algebra query (Codd’s theorem) and all the relational algebra
queries are domain independent.

Theorem 2.9 Every domain independent query Q[X] over a database DB has an corresponding
safe range query giving the same answer.

Proof Sketch. Let D is an unary predicate such as D(x) means x is a database constant of
DB. Let Q′[X] is the same with Q[X] except for each subformula of Q[X] we will replace ∀yψ(y)

by ∀y(D(y) → ψ(y)), ∃xψ(x) by ∃x(ψ(x) ∧D(x)) in Q′[X]. Therefore Q′[X] ∧D(x0) ∧D(x2) ∧
... ∧ D(xn) (X = {x0, ..., xn}) is a safe range query. Of course, it also have the same answer
with Q[X] because for every constant c in the domain C of DB, D(c) is true.

Related to relational algebra - theoretical foundation of the most popular query language SQL,
there is following famous theorem introduced by Codd:

Theorem 2.10 (Codd’s theorem) A first order query is definable in relational algebra if and
only if it is safe range.

17

Chapter 3
Interpolant

In this chapter, we shall discover deeply one of the most famous theorems in logic named
Interpolation theorem invented by William Craig in 1957 [9]. This theorem has a strong impact
in both theoretical and practical aspects of mathematical logic and computer science. In the first
section, we will give a formal theorem and its proof for propositional and first order case. We
also will list some strengthen versions as well as some remarkable applications of the theorem.
In the second one, constructive proofs based on resolution and tableau for the theorem will be
taken into account.

3.1 Craig’s interpolant

Interpolation theorem is a theorem about the relationship between syntax and semantic aspect
of a logic. Roughly speaking, given two sentences φ and ψ such that φ→ ψ is valid then there
is a sentence ι called intepolant where all non logical symbols occurring in ι also occur in both
φ and ψ and φ → ι; ι → ψ. Craig proved the theorem for first order logic and it has been
generalized to many other logics such as equational logic or modal logic. Beside compactness
theorem, interpolation theorem is a crucial property had to be checked for any new logic. Let
us look at some applications to explain why the theorem is so important.

In term of theory consistency [13], given two theories ∆ and Γ which agree on their common
language, one can ask whether we can put them together to have a consistent theory ∆ ∪ Γ.
In first order logic, the answer is ‘yes’ and known as Robinson’s consistent theorem. It is not
difficult to see this theorem can be proved by interpolation theorem because if ∆ ∪ Γ is incon-
sistent then ∆ → ¬Γ is valid. Therefore, there is an I in the common language of ∆ and Γ
such as ∆ → I and I → ¬Γ and it is contradicted to the statement that ∆ and Γ agree in
common language. In general, theory consistency theorem holds in any kind of logic which has
interpolant property.

In term of proof theory, interpolants can be constructed from proofs of validity. Hence, if
the proof system is algorithmitic then there is also an algorithm to compute interpolant. In the
other side, from the (non)existence of interpolant property of a logic, we also can say whether
the logic has a good proof system or not [14].

Now, let us consider the application of interpolation in model checking - one of great ap-
plications of logic in computer science and software engineering. In model checking, a software
or hardware system is modeled as a state transition system which contains a set of states, the
transtion relation between 2 states, the set of initial states and the labelling function for each
state. A property will be ‘safe’ in this system if it is not satisfiable at any reachable state of
initial states. In bounded model checking, they consider only the set of states that are reachable
from initial states in at most k steps. In fact, bounded model checking problem can be reduced
to satisfiabilty problem in propositional logic. For each state s, the conjunction of the formula
corresponding to safe property and the formula φ implying s is reachable is unsatisifiable. In

18

CHAPTER 3. INTERPOLANT

general, compute φ is quite expensive. Fortunately, as shown in [21], toghether with proper-
ties of Craig’s interpolant, an approximation of φ can be computed quickly. That is a reason
why computing interpolant module for propositional logic is implemented in most SAT-based
bounded model checking systems.

Last but not least, we shall look at the interpolant theorem from definability perspective
where our query rewriting framework follows. Roughly stated, in first order logic, a knowledge
base implicitly defines a predicate P if in two arbitrary models which have the same domain
and extensions for other predicates, the extensions of P are the same. We also say the knowl-
edge base explicitly defines P if there is a formula which does not contain P equivalent to P
under the knowledge base. About the relationship between implicit and explicit definability,
Beth proved that implicit definabilty implies explicit definabilty. In the other words, Beth’s
theorem is a completeness theorem for definability. Interpolant theorem in this case is a way
to prove the Beth’s theorem. Moreover, it shows what an explicit definition is. To generalize
the relationship between Beth’s definability and interpolant property, one can show if a logic
has interpolant property then it also has Beth’s theorem. Notice that the opposite direction is
not true as in some logics, Beth’s theorem holds but interpolant theorem does not hold.

3.1.1 The theorem

In this section, the formal theorem given by Craig is taken into account. In [9], Craig stated
that :

Theorem 3.1 (Craig’s interpolant theorem) If A→ A′ and if A and A′ have a predicate
parameter in common, then there is an ‘intermediate’ formula B such that A→ B and B → A′,
and all parameters of B are parameters of both A and A′. Also, if A → A′ and if A and A′

have no predicate parameter in common then either ¬A is valid or A′ is a valid.

Notice that the notion of ‘predicate parameter’ in the theorem is the same with the notion of
language. A simple example of Craig’s interpolant is following :

Example 3.1 φ = A ∧ B, ψ = A ∨ C. We have: φ → ψ is valid. In this case A is a Craig’s
interpolant of φ and ψ because φ→ A and A→ ψ and A occurs in both φ and ψ

There is also another way to express the theorem using inconsistency of theories. Assume ∆
and Γ are two inconsistent theories. Call φ is the conjunction of all sentences in ∆, ψ is the
conjunction of all sentences in Γ. We have, ∆∪Γ is inconsistent iff φ→ ¬ψ is valid. Therefore,
the following theorem is also considered as Craig’s interpolant theorem (for convenience, we
named it Modified Craig’s interpolant theorem) :

Theorem 3.2 (Modified Craig’s interpolant theorem) Let ∆ and Γ are two inconsistent
first order theories which have some common non logical symbols. There is a sentence θ called
Craig interpolant such as θ is true in ∆ and false in Γ and every non logical symbol occurring
in θ occurs in both ∆ and Γ

A logic where the interpolation theorem holds is said that has interpolant property. Regarding
to fragment of first order logic, propositional logic and first order logic with one variable L1

have interpolant property while the Craig’s interpolant theorem fails in Ln with 1 < n (Ln is
first order logic with n variables) and in guarded fragment. A summary [14] on interpolant
property of some first order fragments is given in the table 3.1

3.1.2 The proof

In general, there are several ways to prove the Craig’s interpolant property in a logic such as:
model-theoretic approach and proof-theoretic approach. One tries to construct some models
having certain expected properties in the former while in the latter, an interpolant is found
inductively from the proof of validity or unsatisfiability. In the other words, the first approach
is the semantic one and the second approach is the syntactic one. In some proofs, they combine
both approaches [14].

19

CHAPTER 3. INTERPOLANT

Fragment Interpolant property
First order logic Yes

Propositional logic Yes
L1 Yes

Ln (1 < n < ω) No
Guarded fragment No

Table 3.1: Interpolant property in some FO fragments

In this section, first we shall give a proof for propositional logic and then will consider a proof
for first order logic. These proofs follow the first approach while several methods to construct
an interpolant using second approach will be consider in the next section. Notice that the proof
for the propositional logic considered below is also a constructive one even it does not base on
the proof of validity.

a) Propositional logic
Assume φ → ψ is valid in propositional logic. A(φ) and A(ψ) are the set of propositional
variables in φ and ψ respectively. We will show there is a propositional formula ι which is
an interpolant of φ and ψ by induction in the number n of propositional variables which
occur in φ but do not occur in ψ.
Base case: n = 0 means that all propositional variables in φ is also in ψ. Therefore one can
choose ι = φ because φ→ φ and φ→ ψ are valid. Moreover, A(ι) = A(φ) = A(φ) ∩A(ψ)
Induction hypothesis: Assume the statement holds for n = k, which means that for all φ′

and ψ′ such that if the number of propositional variables occur in φ′ but do not occur in ψ′

is k and φ′ → ψ′ then there is an interpolant of φ′ and ψ′.
Induction step: Now we have to prove that the statement holds for the case n = k+1. Assume
p is an variable such that p ∈ A(φ) but p /∈ A(ψ). Consider the formula φ′ = φ[>/p]∨φ[⊥/p]
where φ[>/p] (φ[⊥/p]) is φ with every occurrence of p replaced by > (⊥). Obviously, φ′ is
equivalent to φ since for every M which is model of φ, if M |= p then M |= φ[>/p], if M 6|= p
then M |= φ[⊥/p]. Then the following is true :

• (3.1.1)φ→ φ′

• (3.1.2)φ′ → ψ

• (3.1.3)The number of variables in φ′ but not in ψ is k

Apply the induction assumption for (3.1.2)and (3.1.3) we imply there is an interpolant ι of
φ′ and ψ. Hence :

• (3.1.4)φ′ → ι

• (3.1.5)ι→ ψ

• (3.1.6)A(ι) ⊆ A(φ′) ∩A(ψ)

From (3.1.1) and (3.1.4) φ→ ι is true while from (3.1.6) A(ι) ⊆ A(φ)∩A(ψ) is true as well.
Therefore ι is an interpolant of φ and ψ

b) First order logic
This proof is a detail version of a proof from [7]. Let φ and ψ are first order sentences and
φ→ ψ is valid. We will show there is an interpolant of φ and ψ by refutation. In the other
words, we will prove if there is no interpolant then φ∧¬ψ is consistent by showing a theory
containing φ and ψ is consistent.
Let L1, L2 are languages corresponding to φ and ψ plus a set C of infinite fresh constants.
L = L1 ∩ L2. T1 and T2 are theories in L1 and L2 respectively. We say T1 and T2 are
inseparable iff there is no φ0 in L such that T1 |= φ0 and T2 |= ¬φ0. Therefore {φ} and
{¬ψ} are inseparable because if not, φ |= φ0(c1, .., cn), φ0(c1, .., cn) |= ψ and c1, .., cn ∈ C.
Consequently, ∀x1, ..., xnφ0(x1, ..., xn) where x1, ..., xn do not occurs in φ0 is an interpolant
of φ and ψ, then we have a contradiction with our assumption.

20

CHAPTER 3. INTERPOLANT

Given a first order language, the set of all formulas in this language is enumerable. Therefore,
let σ0, σ1, ... enumerates all sentences in L1 and θ0, θ1, enumerates all sentences in L2.
Now we will construct sequences of theories T0, T1, ... and U0, U0, ... inductively as follows.

• T0 = {φ}; U0 = {¬ψ}
• At each step i, construct first :

X =

{
Ti ∪ {σi} if Ti ∪ {σi} is inseparable from Ui

Ti, otherwise

Y =

{
Ui ∪ {θi} if Ui ∪ {θi} is inseparable from Ti+1

Ui, otherwise

Then Ui+1 and Ti+1 are constructed as :

Ti+1 =

{
X ∪ {α(c)} for some fresh constant c ∈ C, if σi = ∃xα(x) ∈ X
X, otherwise

Ui+1 =

{
Y ∪ {λ(c)} for some fresh constant c ∈ C, if θi = ∃xλ(x) ∈ Y
Y, otherwise

• Tω =
⋃
i<ω Ti and Uω =

⋃
i<ω Ui

Then the following statements are true:

• Ti and Ui are inseparable for all i < ω
We can prove this statement by induction in i. At the base case i = 0, the statement is
obvious true because {φ} and {¬ψ} are inseparable. At induction hypothesis, Ti and
Ui are inseparable. Assume that Ti∪{σ(c)} and Ui are separable by a formula θ where
c is a new constant and ∃xσ(x) ∈ Ti. If θ does not contain c then θ also separates Ti
and Ui, which is a contradiction. If θ contains c then σ(c) |= θ(c). Then Ui |= ¬σ(c)
as well. Since c is an arbitrary constant and c is not in Ui, Ui |= ¬∃xσ(x). As a
consequence, Ui and Ti now are separable by ∃xσ(x), which also is a contradiction.
The same statement holds when we change the role of T and U . Therefore, Ti+1 and
Ui+1 are inseparable.

• Tω and Uω are inseparable
Assume that Tω and Uω are not inseparable. Hence, there is θ such as Tω |= θ and
Uω |= ¬θ. Apply the compactness theorem, there is i < ω such that Ti |= θ and
Ui |= ¬θ. But Ti and Ui are inseparable then it is a contradiction.

• Tω and Uω are consistent
If Tω is inconsistent then Tω |= ¬(x = x) while Uω |= x = x. Then Tω and Uω are not
inseparable. The same argument can be applied for Uω

• Tω and Uω are complete
Notice that a theory T is complete in a language if for every formula θ in this language,
T |= θ or T |= ¬θ. Assume there is θ in L1 such that neither Tω |= θ nor Tω |= ¬θ. We
can call i is index of θ and j is index of ¬θ in the enumerable above. Then Ti ∪ {σi}
and Ui are separated by θ1; Tj ∪ {σj} and Uj are separated by θ2. As a consequence,
Tω |= θ1 ∨ θ2 where Uω |= ¬θ1 ∧ ¬θ2. Therefore Tω and Uω are not inseparable, which
is a contradiction for above statement. Analogously, we also have Uω are complete

• Tω ∩ Uω is complete
Let θ be a sentence in L. Since both Tω and Uω are complete, either Tω |= θ or Tω |= ¬θ
and either Uω |= θ or Uω |= ¬θ. In the other side, since Tω and Uω are inseparable, if
Tω |= θ then Uω 6|= ¬θ and vice versa. Therefore, either Tω ∩Uω |= θ or Tω ∩Uω |= ¬θ .

21

CHAPTER 3. INTERPOLANT

• Tω ∪ Uω is consistent
Since Tω and Uω are consistent, there are M1 = (D1, S1) and M2 = (D2, S2) as their
models. Because for each existential sentence, we added one witness in C for it then
there always is a case that D1 = D2 = C. Let A1 and A2 are the signature mapping
corresponding to S1 and S2 but just for non-logical symbols in L. Since Tω ∩ Uω is
complete then we can map A1 to A2 [7] without loss of satisfiability. Therefore we can
apply this mapping in order to have a model M of both Tω and Uω. Because φ is in
Tω and ¬ψ is in Uω, Tω ∪ Uω is the theory that we need.

3.1.3 Related theorems

From the Craig’s interpolant theorem we know that the interpolant exists. Nevertheless, the
theorem just says about the language of interpolant and does not mention more about its
syntax restriction. Therefore, the problem of finding syntax restriction of the interpolant w.r.t
the syntax of input formula is also interesting and plausible in some applications.

Let us consider first a famous theorem introduced by Lyndon

Theorem 3.3 (Lyndon’s interpolation theorem) Given S and T are first order theory
such as S ∪ T is unsatisfiable, then there is a interpolating sentence φ in the language of S ∪ T
that is true in all models of S and false in all models of T . Moreover, φ has the stronger prop-
erty that every relation symbol that has a positive occurrence in P has a positive occurrence in
some formula of S and a negative occurrence in some formula of T , and every relation symbol
with a negative occurrence in φ has a negative occurrence in some formula of S and a positive
occurrence in some formula of T

For a detail proof, readers can refer to the original paper of Lyndon [20]. In the next section,
where we consider a constructive method to compute interpolant based on Tableaux, we will
also see that it is actually a constructive proof for the theorem.

In some applications, one also tries to find the syntax restriction of interpolant based on the
syntax restriction of input theories (formulas). For example, in [23] they show that if S and T
are theories such that S → T then if S is an arbitrary first order theory and T contains only
sentences built with ∨,∧,∀,∃ then there is an interpolant built with ∨,∧,∀,∃ as well. Related
to this kind of interpolant theorems, [23] is recommended while a summary of results can be
referred to 3.2

S T Interpolant Note
FO Pos Pos FO - first order sentences

Pos* FO Pos Pos - Positive sentences (built with ∨,∧,∀,∃)
FO ∀ ∀ ∀ - Universal sentences
∀∗ FO ∀ ∗ - All function symbols of S also occur in T
∀∗ Pos ∀∨ ∀∨ - Universally quantified disjunctions of atoms
FO ∃∗∗ ∃ ∃ - Existential sentences
∃ FO ∃ ∗∗ All function symbols of T also occur in S

Table 3.2: Some interpolant results from [23]

3.2 Constructing Craig’s interpolant

Our main discussion in this section is concerned with some methods to compute interpolants
from proofs based on automated theorem proving techniques such as tableaux and resolution.

3.2.1 Tableaux based method

A method to compute interpolant from tableaux proof is proposed by Fitting in [11]. However,
Fitting considered only first order logic without equality. In [4], they considered as well some

22

CHAPTER 3. INTERPOLANT

equality rules which are original based on equality rules for constructing interpolants in quan-
tified hybrid logic. We shall follow [4] in this part and prove the correctness of those rules.

Assume we have φ → ψ is valid, therefore φ ∧ ψ is unsatisfiable. From chapter 2, we all
know that there is a closed tableau corresponding to φ∧ψ. In order to compute an interpolant
from this tableau we need to modify it to biased tableau.

Definition 3.4 (Biased tableau) A biased tableau for formulas φ and ψ is a tree T = (V,E)
where :

• V is a set of nodes, each node is a set of biased formulas. Each biased formula is an
expression in the form of L(ϕ) or R(ϕ) where ϕ is a formula. For each node n, we call
S(n) is the set of biased formulas in n

• The root of the tree is corresponding to {L(φ), R(¬ψ)}

• E is a set of edges. Given 2 nodes n1, n2, (n1, n2) ∈ E iff there is a biased completion rule
from n1 to n2. We say there is a biased completion rule from n1 to n2 if we apply a rule for
a biased formula X(ϕ) in n1 and receive Y (µ) then S(n2) = (S(n1)−{X(ϕ)})∪ {Y (µ)}.

The biased completion rules are quite similar to the completion rules in chapter 2 but formulas
now will be biased formulas. Call C is the set of all constants in input formulas of the tableau.
Cpar extends C with an infinite set of new constants. A constant is new if it does not occur
anywhere in the tableau. We also use X and Y as replacements of L or R. With these notations,
we have the following rules :

• Propositional rules

Negation rules α−rule β−rule
X(¬¬ϕ)

X(ϕ)

X(¬>)

X(⊥)

X(¬⊥)

X(>)

X(ϕ ∧ ψ)

X(ϕ)
X(ψ)

X(¬(¬ϕ ∧ ¬ψ))

X(ϕ) | X(ψ)

• First order rules

γ−rule σ−rule
X(∀x.ϕ)

X(ϕ(t))
for any t ∈ Cpar

X(∃x.ϕ)

X(ϕ(c))
for a new constant c

• Equality rules

refexivity rule replacement rule

X(ϕ)

X(t = t)
t ∈ Cpar occurs in ϕ

X(t = u)
Y (ϕ(t))

Y (ϕ(u))

A node in the tableau is closed if it contains X(ϕ) and Y (¬ϕ). If a node is closed, we will not
apply any rule on it. In the other words, it becomes a leaf of the tree. A branch is closed if
it contains a closed node and a tableau is closed if all of its branches are closed. Of course, if
the normal tableau is closed then so is the biased tableau and vice versa. Therefore if φ → ψ
is valid then the biased tableau of φ ∧ ¬ψ is closed.

Now we are ready to compute interpolant of φ and ψ using this tableau. For interpolant

23

CHAPTER 3. INTERPOLANT

rules, we use notion S
int−→ I where S = {L(φ1), L(φ2), ..., L(φn), R(ψ1), R(ψ2), ..., R(ψm)} and

I is a formula. Given a closed tableau, the interpolant is computed bottom-up based on the
following rules :

• Rules for closed branches

r1. S ∪ {L(ϕ), L(¬ϕ)} int−→ ⊥ r2. S ∪ {R(ϕ), R(¬ϕ)} int−→ >

r3. S ∪ {L(⊥)} int−→ ⊥ r4. S ∪ {R(⊥)} int−→ >

r5. S ∪ {L(ϕ), R(¬ϕ)} int−→ ϕ r6. S ∪ {R(ϕ), L(¬ϕ)} int−→ ¬ϕ

• Rules for propositional cases

p1.
S ∪ {X(ϕ)} int−→ I

S ∪ {X(¬¬ϕ)} int−→ I
p2.

S ∪ {X(>)} int−→ I

S ∪ {X(¬⊥)} int−→ I
p3.

S ∪ {X(⊥)} int−→ I

S ∪ {X(¬>)} int−→ I

p4.
S ∪ {X(ϕ1), X(ϕ2)} int−→ I

S ∪ {X(ϕ1 ∧ ϕ2)} int−→ I
p5.

S ∪ {L(ϕ1)} int−→ I1 S ∪ {L(ϕ2)} int−→ I2

S ∪ {L(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∨ I2

p6.
S ∪ {R(ϕ1)} int−→ I1 S ∪ {R(ϕ2)} int−→ I2

S ∪ {R(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∧ I2
• Rules for first order cases :

f1.
S ∪ {X(ϕ(p))} int−→ I

S ∪ {X(∃x.ϕ(x))} int−→ I
where p is a parameter that does not occur in S or ϕ

f2.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int→ I
if c occurs in {ϕ1, ..., ϕn}

f3.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ I
if c occurs in {ψ1, ..., ψm}

f4.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int−→ ∀x.I[c/x]
if c does not occur in {ϕ1, ..., ϕn}

f5.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ ∃x.I[c/x]
if c does not occur in {ψ1, ..., ψm}

• Rules for equality cases

e1.
S ∪ {X(ϕ(p)), X(t = t)} int−→ I

S ∪ {X(ϕ(p))} int−→ I
e2.

S ∪ {X(ϕ(u)), X(t = u)} int−→ I

S ∪ {X(ϕ(t)), X(t = u)} int−→ I

e3.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ t = u→ I
if u occurs in ϕ(t), ψ1, ..., ψm

e4.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ t = u ∧ I
if u occurs in ϕ(t), ψ1, ..., ψm

e5.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ I[u/t]
if u does not occur in ϕ(t), ψ1, ..., ψm

e6.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ I[u/t]
if u does not occur in ϕ(t), ψ1, ..., ψm

Let φ and ψ as above and T is their biased tableau. Since φ∧¬ψ is unsatifiable then the biased
tableau T is closed. Call S is the root of the tableau, we have the following theorem :

Theorem 3.5 (Correctness of interpolant rules) If S
int−→ I then I is an interpolant of φ

and ψ

24

CHAPTER 3. INTERPOLANT

Proof
We will prove the theorem by induction on the shape of the biased tableau. In the other words,
we will show that at each node correponding to S′ = {L(φ1), ..., L(φn), R(ψ1), ..., R(ψm)} and

S′
int−→ I then I is an interpolant of L(S′) = φ1 ∧ ... ∧ φn and R(S′) = ¬ψ1 ∨¬ψm

First, let us check base cases. For r1 rule, since S′ contains L(ϕ) and L(¬ϕ) then L(S′) ≡ ⊥
and of course ⊥ is an interpolant of ⊥ and an arbitrary formula. r2, r3, r4 can be proved
analogously. For r5 rule, we have L(S′) = ϕ ∧ ... and R(S′) = ϕ ∨ Then, L(S′) → ϕ,
ϕ → R(S′) and ϕ is in both left and right side. Therefore, ϕ is an interpolant of L(S′) and
R(S′). The rule r6 can be proved similarly.
Now let’s move to propositional cases:

• For p1 rule, since I is an interpolant of L(S ∪ {X(ϕ)}) and R(S ∪ {X(ϕ)}) then I is an
interpolant of L(S ∪ {X(¬¬ϕ)}) and R(S ∪ {X(¬¬ϕ)}) because ϕ ≡ ¬¬ϕ. Analogously
p2, p3 hold.

• For p4 rule, if X is L, since L(S) ∧ ϕ1 ∧ ϕ2 ≡ L(S) ∧ (ϕ1 ∧ ϕ2) then the interpolant is
preserved. If X is R, we also have R(S) ∨ ¬ϕ1 ∨ ¬ϕ2 ≡ R(S) ∨ ¬(ϕ1 ∧ ϕ2) then the
interpolant is preserved as well.

• For the rule p5, I1 is interpolant of L(S)∧ϕ1 and R(S) and I2 is interpolant of L(S)∧ϕ2

and R(S). Then L(S)∧(ϕ1∨ϕ2)→ I1∨I2 and I1∨I2 → R(S). Since constants, functions
and relations symbol in I1 are in L(S) ∧ ϕ1, constants, functions and relations symbol in
I2 are in L(S) ∧ ϕ2, then all constants, functions and relations symbol in I1 ∨ I2 should
be in L(S) ∧ (ϕ1 ∨ ϕ2). Therefore I1 ∨ I2 is an interpolant of L(S) ∧ (ϕ1 ∨ ϕ2) and R(S)

• For the rule p6, I1 is interpolant of L(S) and R(S) ∨ ¬ϕ1, I2 is interpolant of L(S) and
R(S) ∨ ¬ϕ2. Then L(S) → I1 ∧ I2, (I1 ∧ I2) → (R(S) ∨ ¬ϕ1) ∧ (R(S) ∨ ¬ϕ2) which is
equivalent to (I1 ∧ I2)→ R(S) ∨ ¬(ϕ1 ∨ ϕ2). Then I1 ∧ I2 is an interpolant of L(S) and
R(S) ∨ ¬(ϕ1 ∨ ϕ2) because the language of I1 ∧ I2 is in the languages of both L(S) and
R(S) ∨ ¬(ϕ1 ∨ ϕ2).

Related to first order cases, we have :

• For f1 rule, if X = L then suppose I is an interpolant of L(S) ∧ ϕ(p) and R(S) where p
is not in ϕ and S. Assume M is a model of L(S) ∧ ∃xϕ(x) but M is not a model of I
and under M , x is assigned to a in the domain of M . Since p is not in I so the extension
M ′ of M such that p is assigned to a is not a model of I either. But M ′ is a model of
L(S)∧ϕ(p) then we have the contradiction. Moreover, it is trivial to see that the language
I is in both L(S) ∧ ∃xϕ(x) and R(S). Therefore I is an interpolant of L(S) ∧ ∃xϕ(x)
and R(S). If X = R, we have I is an interpolant of L(S) and R(S) ∧ ¬ϕ(p). Since p
is an arbitrary constant that is not in S or ϕ then I → R(S) ∧ ∀x¬ϕ(x) as well. Then
I → R(S) ∧ ¬∃xϕ(x). Analogously, I is an interpolant of L(S) and R(S) ∧ ¬∃xϕ(x).

• The f2 rule is quite trivial because we always have ∀xϕ(x)→ ϕ(c)

• For f3 rule, suppose I is an interpolant of L(S) and R(S) ∨ ¬ϕ(c). Since ∀xϕ(x) →
ϕ(c) then ¬ϕ(c) → ¬∀xϕ(x). Consequently I → (R(S) ∨ ¬∀xϕ(x)). Therefore I and
interpolant of L(S) and R(S) ∨ ¬∀xϕ(x) because even if I contains c then c is in the
common language between L(S) and R(S) ∨ ¬∀xϕ(x) (because c occurs in {ϕ1, ..., ϕn})

• For f4 rule, assume I is an interpolant of L(S)∧ϕ(c) and R(S), we have to prove ∀xI[c/x] is
an interpolant of L(S)∧∀xϕ(x) and R(S). First, ∀xI[c/x]→ I, then ∀xI[c/x]→ R(S) (1).
Second, since L(S) ∧ ϕ(c)→ I then ¬I → ¬(L(S) ∧ ϕ(c)). Consequently, ∃x(¬I[c/x])→
∃x(¬(L(S)∧ϕ(c))). Since c is not inR(S) then: ¬∀xI[c/x]→ ¬(L(S)∧∀xϕ(x)). Therefore
L(S) ∧ ∀xϕ(x) → ∀xI[c/x] (2). From (1) and (2) we have ∀xI[c/x] is an interpolant of
L(S) ∧ ∀xϕ(x) and R(S) because it is trivial to see the languague of ∀xI[c/x] is in the
common language of L(S) ∧ ∀xϕ(x) and R(S).

• Rule f5 can be proved analogously as rule f4.

25

CHAPTER 3. INTERPOLANT

For equality rules we have :

• The rule e1, e2 are trivial

• For rule e3, suppose I an interpolant of L(S) ∧ ϕ(u) and R(S) ∨ ¬(t = u), we have to
prove that t = u→ I is an interpolant of L(S)∧ϕ(t) and R(S)∨¬(t = u) where u occurs
in ϕ(t) or L(S). First, call M is a model of L(S) ∧ ϕ(t). If t = u is true under M , M
is also a model of L(S) ∧ ϕ(u), then M |= I and finally M |= t = u → I. If t = u is
false under M then M |= t = u → I. Therefore M always is a model of t = u → I.
As a consequence, we have L(S) ∧ ϕ(t) → t = u → I is valid (3). Second, call M ′ is a
model of t = u → I. If M ′ |= t = u then M ′ |= I. But I → R(S) ∨ ¬(t = u) is valid,
so M ′ is a model of R(S) ∨ ¬(t = u). If t = u is false in M ′ then M ′ is also a model
of R(S) ∨ ¬(t = u) (4). Moreover, since the language of I is in the common language
of L(S) ∧ ϕ(u) and R(S) ∨ ¬(t = u) and u occurs in ϕ(t) or L(S) then the languague
of t = u → I is in the common language of L(S) ∧ ϕ(t) and R(S) ∨ ¬(t = u)(5). From
(3)(4)(5), we have t = u→ I is an interpolant of L(S) ∧ ϕ(t) and R(S) ∨ ¬(t = u).

• Rule e4 can be proved analogously as rule e3.

• For rule e5, suppose I an interpolant of L(S) ∧ ϕ(u) and R(S) ∨ ¬(t = u), we have to
prove I[u/t] is an interpolant of L(S)∧ϕ(t) and R(S)∨¬(t = u) where u does not occur
in ϕ(t) or L(S). First, since u does not occur in ϕ(t) or L(S) if L(S)∧ϕ(u)→ I is valid,
L(S) ∧ ϕ(t) → I[u/t] is valid as well(6). Second, call M is an model of I[u/t], if u = t
is true under M then so is I. Since I → R(S) ∨ ¬(t = u) valid then R(S) ∨ ¬(t = u) is
true under M as well. If u = t is false under M then R(S) ∨ ¬(t = u) is still true under
M . Therefore I[u/t] → R(S) ∨ ¬(t = u) is valid(7). Since t is in both L(S) ∧ ϕ(t) and
R(S) ∨ ¬(t = u) then the language of I[u/t] is in the common language of L(S) ∧ ϕ(t)
and R(S) ∨ ¬(t = u) (8). From (6)(7)(8), we have I[u/t] is an interpolant of L(S) ∧ ϕ(t)
and R(S) ∨ ¬(t = u)

• Rule e6 can be proved analogously as rule e5.

3.2.2 Interpolation for ALC concepts

In this section, we shall look at a tableau based method to compute interpolant of two ALC
concepts C and D such as C v D is valid under a TBox T where the interpolant is defined as
follows :

Definition 3.6 (Interpolant for ALC with Tboxes) Given a Tbox T = T1 ∪ T2 and two
concepts H and J such that H vT J . A concept I is called interpolant of H and J under T iff
H vT I, I vT J and Σ(I) ⊆ Σ(H, T1) ∩ Σ(J, T2) where Σ(I) is the set of all atomic concept
names and atomic role names in I and Σ(H, T1) (Σ(J, T2)) is the set of all atomic concept
names and atomic role names in H (J) or T1 (T2)

In order to show the interpolant always exists, we shall describle a method proposed in [26]
where the similar idea of improving normal tableau to biased tableau is applied. According to
this method, first all axioms C v D in Tbox T are transformed to > v ¬C tD and then we
can consider T as a set of universal concepts. Given an infinite set of variables names NV and
< is a well-order relation on NV , we define:

• A labeled concept is an expression of the form Cλ where λ ∈ {l, r} and C is a concept.

• An expression of the form (x : D)λ is a biased contraint where D is a concept, x ∈ NV
and λ ∈ {l, r}.

• A finite, non-empty set S of biased constraints is an a biased constraint system. A varibale
x ∈ NV is fresh for S if x does not occur in S and for all y in S, y < x. If a variable x
occurs in S then S also contains (x : >)l and (x : >)r

26

CHAPTER 3. INTERPOLANT

• For any x in S, the set of x − constraints of S (denoted by x : C ∈ S) is the set of all
constrains in S in the form of (x : D)λ

• For a role name R, succ(x,R, S) = {Cλ|(x : ∀R.C)λ ∈ S}

• If X is a set of labeled concept then x : X is a shorter way to express the set of biased
constraints {(x : C)λ|Cλ ∈ X}

• A biased contrains system S is a clash if there are variable x and concept name A,
{(x : A)λ, (x : ¬A)κ} ∈ S.

Ru rule
Condition : (x : C1 u C2)λ ∈ L(g) and {(x : C1)λ, (x : C2)λ} 6⊆ L(g)
Effect : L(g′) = L(g) ∪ {(x : C1)λ, (x : C2)λ}
Rt rule
Condition : (x : C1 tC2)λ ∈ L(g) and {(x : C1)λ, (x : C2)λ} ∩L(g) = ∅
Effect : L(g′) = L(g) ∪ {(x : C1)λ} and L(g′′) = L(g) ∪ {(x : C2)λ}
R∃ rule
Condition : (x : ∃R.C)λ ∈ L(g) and there is no variable y in L(g) such

that y : {Cλ} ∪ succ(x,R, S) ⊆ L(g)
Effect : L(g′) = L(g) ∪ {(x : C1)λ} ∪ y : {Cλ} ∪ succ(x,R, S) ∪ T

where y fresh for S

Table 3.3: Biased completion rules for ALC

Given two concept H and J and a tbox T is the set of univeral concepts, T l is the set of labeled
l concepts in T and T r is the set of labeled l concepts in T . A biased tableau for 〈H u ¬J, T 〉
is a finite tree (V,E) with labelling function L such as :

• L maps each node v ∈ V into a biased constrain system L(v)

• L(v0) is corresponding with the biased constrain system x0 : {H l, (¬J)r}∪T l ∪T r where
v0 is the root and x0 is the initial variable.

• L maps each (v1, v2) ∈ E to a biased completion rule from table 3.3

na1.
(x : A)l, (x : ¬A)l ∈ L(g)

int(g)(x) := ⊥

na2.
(x : A)r, (x : ¬A)r ∈ L(g)

int(g)(x) := >

na3.
(x : A)l, (x : ¬A)r ∈ L(g)

int(g)(x) := A

na4.
(x : A)r, (x : ¬A)l ∈ L(g)

int(g)(x) := ¬A

Table 3.4: Closed branch rules for ALC

As we see, given a root node, the tableau will be built by applying these rules repeatedly. In this
case, we just consider the building strategy such as the priority of the rules is Ru > Rt > R∃.
For each node v, the bulding process will finish if there is no more rule can be applied or if
L(v) is a clash. The tableau is said closed if all its branches are closed. In the case that H and
J fulfill the condition in the above definition where T l = {Cl|C ∈ T1} and T r = {Cr|C ∈ T2},
the tableau is closed because H u ¬J is unsatifiable under T .

In the next step, we shall construct the interpolant in the definition based on the closed
tableau. Given a node g in the tableau, let {(x : C0)l, ..., (x : Cn)l, (x : D0)r, ..., (x : Dm)r} is
x− constraints in L(g), we have :

27

CHAPTER 3. INTERPOLANT

pa1.

(x : C1 u C2)λ ∈ L(g)
L(g′) = L(g) ∪ {(x : C1)λ, (x : C2)λ}

int(g) := int(g′)

pa2.

(x : C1 t C2)l ∈ L(g)
L(g′) = L(g) ∪ {(x : C1)l}
L(g′′) = L(g) ∪ {(x : C2)l}
int(g) := int(g′) t int(g′′)

pa3.

(x : C1 t C2)r ∈ L(g)
L(g′) = L(g) ∪ {(x : C1)r}
L(g′′) = L(g) ∪ {(x : C2)r}

int(g)(y) := int(g′)(y) t int(g′′)(y)(y 6= x)
int(g)(x) = int(g′)(x) u int(g′′)(x)

Table 3.5: Propositional rules for ALC

• A concept I is an interpolant of this x− constraints if I is an interpolant of C0 u ...uCn
(> if n = 0) and ¬D0 t tDm (⊥ if m = 0) under T .

• int(g) is the set of all interpolants corresonding to all variables in g. int(g)(x) is the
interpolant corresponding to x.

• int(g) = int(g1) t int(g2) (int(g) = int(g1) u int(g2)) means that for every variable x in
g, int(g)(x) = int(g1)(x) t int(g2)(x)(int(g)(x) = int(g1)(x) u int(g2)(x)). Notice that
the relation t and u between two concepts can be applied here for a special concept null
where C t null = null t C = C and C u null = null u C = C.

fa1.

(x : ∀R.C)l ∈ L(g)
L(g′) = L(g) ∪ (y : {Cl} ∪X)

int(g)(z) := int(g′)(z) z 6= x, z 6= y
int(g)(y) := null I := int(g′)(y)
int(g)(x) := int(g′)(x) if I = null
int(g)(x) := int(g′)(x) t ⊥ if I = ⊥
int(g)(x) := int(g′)(x) t ∃R.I otherwise

fa2.

(x : ∀R.C)r ∈ L(g)
L(g′) = L(g) ∪ (y : {Cr} ∪X)

int(g)(z) := int(g′)(z) z 6= x, z 6= y
int(g)(y) := null I := int(g′)(y)
int(g)(x) := int(g′)(x) if I = null
int(g)(x) := > if I = >
int(g)(x) := int(g′)(x) t ∀R.I otherwise

Table 3.6: First order rules for ALC

Then for each node g in the tableau, int(g) is computed based on if-then rules in tables: 3.4,
3.5, 3.6. Notice that for a variable x, if these rules do not assign a value for int(g)(x) then
int(g)(x) is assumed to be null.

Related to the soundness of these rules, we have the following lemma

Lemma 3.7 For every node g in the tableau, x is a variable in L(g), if int(g)(x) is not null,
it is an interpolant for the x− constraints of L(g).

Proof
Sketch. In order to prove the theorem, one can use induction and then verify the soundness

28

CHAPTER 3. INTERPOLANT

nc1.
(x : C)l, (x : ¬C)l ∈ L(g)

int(g)(x) := ⊥

nc2.
(x : C)r, (x : ¬C)r ∈ L(g)

int(g)(x) := >

nc3.
(x : C)l, (x : ¬C)r ∈ L(g)

int(g)(x) := C

Table 3.7: Non-atomic closed branch rules for ALC

of each rule. In [26], they showed the soundness of fa2. Now we will show the soundness of
pa3. Let us consider the case y 6= x first. Assume int(g′)(y) and int(g′′)(y) are interpolants of
y− constraints in L(g′) and L(g′′). Since there is no difference among y− constraints of L(g),
L(g′) and L(g′′) then int(g)(y) = int(g′)(y)tint(g′′)(y) = int(g′)(y) = int(g′′)(y) is interpolant
of y − constraints in L(g). Second, for the x case, assume I1 = int(g′)(x) and I2 = int(g′′)(x)
are interpolants of x − constraints in L(g′) and L(g′′). Let {(x : D0)l, ..., (x : Dn)l, (x :
E0)r, ..., (x : Em)r} is x−constraints in L(g). We have I1 is an interpolant of D0u ...uDn and
¬E0t ...t¬Emt¬C1 and I2 is an interpolant of D0u ...uDn and ¬E0t ...t¬Emt¬C2. Then
(D0u ...uDn) vT I1u I2 (1) and I1u I2 vT (¬E0t ...t¬Emt¬C1)u (¬E0t ...t¬Emt¬C2).
Since (¬E0 t ...t¬Em t¬C1)u (¬E0 t ...t¬Em t¬C2) ≡ ¬E0 t ...t¬Em t¬(C1 tC2) then
I1uI2 vT ¬E0t ...t¬Emt¬(C1tC2) (2). Moreover, since L(g) contains both C1 and C2 then
Σ(I1uI2) fulfills the condition for interpolant(3). From (1)(2)(3) we have expected statement.

Ru1 rule
Condition : (x : A)λ ∈ L(g), A ≡ C is in TU (or T ′U) and (x : C)l /∈

L(g) (or (x : C)r /∈ L(g))
Effect : L(g′) = L(g) ∪ {(x : C)l} (or {(x : C)r}
Rt1 rule
Condition : (x : ¬A)λ ∈ L(g), A ≡ C is in TU (or T ′U) and (x : ¬C)l /∈

L(g) (or (x : ¬C)r /∈ L(g))
Effect : L(g′) = L(g) ∪ {(x : ¬C)l} (or {(x : ¬C)r}
R∃1 rule
Condition : (x : ∃R.C)λ ∈ L(g) and A v C is in TU (or T ′U), and

(x : C)l /∈ L(g) (or (x : C)r /∈ L(g))
Effect : L(g′) = L(g) ∪ {(x : C)l} (or {(x : C)r})

Table 3.8: Lazy unfolding completion rules for ALC

For the correctness of the method we have :

Lemma 3.8 Given H,J and T as in the definition 3.6, g0 is the root of closed tableau corre-
sponding to them and x0 is the initial variable then int(g0)(x0) is not null.

Proof
In order to prove it, first we will show for two variable x and y in the tableau, if x < y,
int(g′)(y) 6= null and g′ is an descendent of g then int(g)(x) 6= null by induction on the num-
ber k of variables between x and y. For the base case k = 0 then g′ is a child of g where in L(g)
there is (x : ∃R.C)κ. Then int(g)(x) is computed based on one of 2 rules : fa1 and fa2. Since
int(g′)(y) 6= null, base on the conditions of these rules we have int(g)(x) 6= null. At induction
step, assume that the statement holds for k = n, we have to prove that it holds for k = n+ 1.
Call x1 > ... > xn > xn+1 are variables between y and x. Then int(gn)(xn) is not null. Based
on the same argument as in the base case, int(g)(x) 6= null. For the case x = y, the statement
trivialy holds. Under the construction we have x0 is the smallest variable and g0 is the biggest
ancestor in the tableau then int(g0)(x0) is not null because for all variable y which causes the

29

CHAPTER 3. INTERPOLANT

clash in g then int(g)(y) 6= null

Related to some optimization techniques mentioned in section 2.3, a set of corresponding rules
for non-atomic closed branch and lazy unfolding is introduced in the paper [26] as well. In
the case of non-atomic closed branch, the biased completion rules are the same but only the
interpolant calculation rules for clashes need to be motified as in 3.7. In the case of lazy un-
folding, the biased completion rules need to expand with the rules mentioned in 3.8, where the
interpolant calculation rules correponding to them are introduced in 3.9

la1.

(x : A)λ ∈ L(g)
A ≡ C ∈ TU (orT ′U)

L(g′) = L(g) ∪ {(x : C)κ}
int(g) := int(g′)

la2.

(x : ¬A)λ ∈ L(g)
A ≡ C ∈ TU (orT ′U)

L(g′) = L(g) ∪ {(x : ¬C)κ}
int(g) := int(g′)

la3.

(x : ¬A)λ ∈ L(g)
A v C ∈ TU (orT ′U)

L(g′) = L(g) ∪ {(x : C)κ}
int(g) := int(g′)

Table 3.9: Lazy unfolding interpolant rules for ALC

3.2.3 Resolution based methods

In order to apply interpolation for model checking, several methods to compute interpolant for
propositional logic from the resolution proof has been proposed in [21] [24]. In this section,
instead of considering these specific methods, we shall follow a general method introduced by
Huang [16] where Craig interpolant formulas are constructed from completeness resolution for
first order logic. However, in Huang’s paper, the difference between the clause form of a sentence
and the sentence ifseft is not considered and makes readers confused. Hence, we shall clarify
the difference in each definition or theorem as well

From section 2.2, one can see that given two sentences φ and ψ such as φ∧ψ is unsatifiable,
Σ is the set of clauses of φ’s clause form, Π is the set of clauses of ψ’s clause form, then there
is a way to apply resolution rule, factoring rule and paramodulation rule repeatly in order to
generate the empty clause from Σ and Π. We name it as ‘resolution proof’.

Definition 3.9 (Resolution proof) Given two set of clauses Σ and Π where Σ∪Π is unsas-
tifiable, a resolution proof P corresponding to Σ and Π is a directed acyclic graph (V,E) with
labelling function L where :

• V is the set of nodes where each node is corresponding to a clause

• For each node v ∈ V :

– v ∈ Σ or v ∈ Π, v is called a leaf. L(v) is corresponding to Σ or Π

– v is result of applying : resolution rule, paramodulation for v1 or v2 or factoring rule
for v1 where v1, v2 is in V . L(v) is corresponding to the names of these rules.

• (v1, v) and (v2, v) is in E if v is the resolvent or paramodulant of v1 and v2. (v1, v) ∈ E
if v is the factor of v1.

• The empty clause is the unique root of the graph

30

CHAPTER 3. INTERPOLANT

For each literal L in the resolution proof P , we say L is from Σ(Π) if its relation symbols occurs
in Σ(Π), L is from Σ(Π) alone if L is from Σ(Π) but not from Π(Σ). For a term t in P , we
say t is noncommon term if t begins with a symbol which is not in the common language of Σ
and Π. A noncommon term is called Σ− term (Π− term) if its initial symbol is from Σ (Π).
An occurrence of a Σ− term (Π− term) is said maximal if it is not a subterm of a Σ− term
(Π− term).

We need to compute the interpolant (according to Modified Interpolant Theorem) of φ and
ψ such as φ ∧ ψ is unsatifiable base on resolution proof of Σ and Π where Σ and Π are their
clause forms.

For each vertex v ∈ V , we call s(v) is local interpolant of v and s(v) is computed as follows
:

• Input cases
If v is a leaf and L(v) = Σ then (i1.)s(v) = ⊥. In the case L(v) = Π then (i2.)s(v) = >

• Resolvent cases
If v is the resolvent of v1 = L ∨ C and v2 = D ∨ ¬L′ and π is m.g.u of L and L′ then :

– (res1.)s(v) = (s(v1) ∨ s(v2))π if L is from Σ alone

– (res2.)s(v) = (s(v1) ∧ s(v2))π if L is from Π alone

– (res3.)s(v) = ((¬L′ ∧ s(v1)) ∨ (L ∧ s(v2)))π otherwise

• Factor cases
If v is the factor of v1 = L∨L′ ∨C and π is m.g.u of L and L′ then (fac1)s(v) = (s(v1))π

• Paramodulant cases
If v is the paramodulant of v1 = C(r) and v2 = (s = t ∨ D) and π is m.g.u of r and s
then :

– (para1.)s(v) = ((s(v1) ∧ s = t) ∨ (s(v2) ∧ s 6= t))π ∨ (s = t ∧ h(s) 6= h(t))π if r
occurs in C(r) as a subterm of a maximal Π− term h(r) and there is more than one
occurence of h(r) in C(r) ∨ s(v1)

– (para2.)s(v) = ((s(v1) ∧ s = t) ∨ (s(v2) ∧ s 6= t))π ∨ (s 6= t ∧ h(s) = h(t))π if r
occurs in C(r) as a subterm of a maximal Σ− term h(r) and there is more than one
occurence of h(r) in C(r) ∨ s(v1)

– (para3.)s(v) = (s(v1) ∧ s = t) ∨ (s(v2) ∧ s 6= t))π otherwise.

We have the following theorem :

Theorem 3.10 For each node v in resolution proof P of Σ and Π , s(v) fulfills the following
conditions :

1. All relational symbols of s(v) are in the common language of Σ and Π where ~x are free
variables in θ

2. Σ |=∗ s(v) ∨ v

3. Π |=∗ ¬s(v) ∨ v

Proof
Sketch. One can prove this theorem base on induction in the shape of P where the correctness
of each rule is proved detailly in Huang’s paper. Notice that Σ,Π, s(v), v here may be contain
free variables so actually the relation |=∗ here is slightly different from normal |= relation such
as A |=∗ B means ∀~xA(x) |= ∀~yB(y) where ~x, ~y are free variables in A,B.

Theorem 3.11 Given v0 is the root node of resolution proof P of Σ and Π and s(v0) =
φ(t1, ..., tn) where ti is the maximal Σ−term(Π−term) in φ then θ = Q1x1...Qnxnφ(x1, ..., xn)
where Qi = ∃ if ti is Σ− term, Qi = ∀ if ti is Π− term fulfills the following conditions :

31

CHAPTER 3. INTERPOLANT

• The language of θ is in the common language of Σ and Π

• Σ |=∗ θ

• Π |=∗ ¬θ

In order to prove this theorem, Huang first used lifting theorem to transform the resolution
proof to the propositional one and then prove two last conditions by induction on the shape of
propositional proof.

Now consider standard Craig interpolant between φ and ψ, we have the following theorem

Theorem 3.12 Given θ as in theorem 3.11, ∀~xθ is the interpolant of φ and ψ

Proof First, one can see that ∀~xθ does not contain any slokem term because it is not a com-
mon term of Σ and Π. Therefore, the language of ∀~xθ is in the common language of φ and ψ.
Second, assume M is a model of φ but M is not a model of ∀~xθ, use the theorem 3.11 we can
extend M to M ′ such as M ′ is not a model of ∀~yΣ (~y are free variable in Σ). It is contradiction
to the fact that φ |= ∀~yΣ. The condition related to ψ and Π can be verified similarly.

32

Chapter 4
Query rewriting framework

Following all formal definitions, theorems presented in previous chapters, we are now ready to
define a query rewriting framework in first order logic which:

• Reduces the problem of deciding the existence of a rewriting of a query over a set of
predicates and a knowledge base to validity of a first order formula.

• Provides an effective way to construct the rewriting if it exists.

• Points out conditions to transform query answering problem over database and knowledge
base to model checking over database.

• Gives general properties of knowledge bases and original queries that make sure rewritten
queries fulfill not only those conditions above but also constraints which guarantee these
rewritings can be executed using relational database techniques.

• Proves that description logic ACL and guarded fragment logic are possible applications
of the framework.

4.1 General framework

In the paper [4], a general framework for reformulating a query using a set of predicates named
database predicates was described unambiguously. Therefore, in two first parts of this section,
we shall follow that paper.

First, let us consider a set of notions and assumptions that will be used:

• C is the set of constants.

• KB is a set of constraints, which actually is a set of first order sentences

• M(KB) is the set of all models of KB

• Given a database DB, PDB is a set of predicates occurring in DB

• Given a database DB, CDB is a set of database constants in DB and CDB ⊆ C

• ΣKB is the signature of KB. ΣQ is the signature of formula Q

• σ(Q) is the set of predicates in Q

• Given an interpretation I and a set of predicates P, I|P is an interpretation as I in terms
of domain ∆I and interpretation function .I but defined only for predicates in P

• Given KB and PDB , K̃B is a set of constraints as in KB where every predicate P ∈ ΣKB
such as P /∈ PDB is renamed to P̃ .

33

CHAPTER 4. QUERY REWRITING FRAMEWORK

• Given a formula Q and PDB , Q̃ is defined similarly as K̃B

• IDB means the interpretation I embeds database DB as described in section 2.4. I∆
DB

where ∆ is a domain is an interpretation embedding DB with ∆ is its domain.

4.1.1 Definability of a query

In order to rewrite a query using a set of predicates under a knowledge base, the definability of
the query is taken into account. Revised from the notion of implicit definability of a predicate
given by Beth [11], we have a similar definition for a query as follow:

Definition 4.1 (Implicit definability: semantic) Let I and J be two models of the con-
strains KB. A query Q[X] is implicitly definable from the database predicates PDB under

constraints KB iff I|PDB = J |PDB and ∆I = ∆J implies that for every substitution Θ∆I

X :

I,Θ∆I

X |= Q[X] iff J,Θ∆I

X |= Q[X]

In fact, this definition means that given a set of constraints KB, the query is implicitly definable
from PDB if under arbitrary two KB’s models which have the same domain and the same
interpretation function on predicates in PDB , the truth values of the query are indistinguishable.
In the other words, the answer of an implicitly definable query depends only on the extension of
database predicates. Therefore, there is another way to express implicit definiablity of a query
as follows:

Definition 4.2 (Implicit definability: syntactic) A query Q[X] is implicitly definable from
the database predicate PDB under the constraints KB if :

KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X]

One can verify that these definitions actually are coincident by the following theorem :

Theorem 4.3 Syntactic definition and semantic definition of implicit definability of a query
are equivalent.

Proof

• Semantic definition implies syntactic definition

Let M is a model of KB∪K̃B. We will prove that M is also a model of ∀X.Q[X] ↔ Q̃[X].

Based on the renaming rule, we can say M = I ∪ J ′ where ∆I = ∆J′ = ∆M , I|PDB =
J ′|PDB , I interprets un-renamed predicates while J ′ interprets renamed predicates and

I is a model of KB, J ′ is a model of K̃B. Since J ′ is a model of K̃B then J is also
a model of KB (where J is an interpretation such that: ∆J = ∆J′ , J |PDB = J ′|PDB
and for a predicate P ∈ Sigma(KB) but P /∈ PDB , J interprets P as J ′ interprets P̃).

Apply the condition of semantic definition, we have for all Θ∆I

X , if I,Θ∆I

X |= Q[X] then

J,Θ∆I

X |= Q[X] (4). Actually, (4) is equivalent to if I,Θ∆I

X |= Q[X] then J ′,Θ∆I

X |= Q̃[X].

In the other words, I∪J ′ is a model of ∀X.Q[X] → Q̃[X]. Another direction can be proved
analogously.

• Syntactic definition implies semantic definition

Let I, J be models of KB fulfill the conditions that ∆I = ∆J , I|PDB = J |PDB . Let Θ∆I

X

is the substitution such as I,Θ∆I

X |= Q[X]. We shall prove that J,Θ∆I

X |= Q[X].

From J construct an interpretation J ′ such that ∆J = ∆J′ , J |PDB = J ′|PDB and for a

predicate P ∈ Σ(KB) but P /∈ PDB , J ′ interprets P̃ as J interprets P . Since J is a model

of KB then J ′ is a model of K̃B. From the condition of syntactic implicit definability, we
have M = I∪J ′ (M is defined as above) is a model of ∀X.Q[X] ↔ Q̃[X] as well. Therefore,

for all substitution Θ∆I

X , if I ∪ J ′,Θ∆I

X |= Q[X] then I ∪ J ′,Θ∆I

X |= Q̃[X] (1). Moreover, Q

does not contain renamed predicates and Q̃ does not contain un-renamed predicates then

34

CHAPTER 4. QUERY REWRITING FRAMEWORK

(2) is equivalent to for all substitution Θ∆I

X , if I,Θ∆I

X |= Q[X] then J ′,Θ∆I

X |= Q̃[X] (3).

Based on the description above of J ′, we have (3) is equivalent to if I,Θ∆I

X |= Q[X] then

J,Θ∆I

X |= Q[X], which is our expected statement

Based on these definitions, one can see that the problem of checking whether a query is implicitly
definable or not can be reduced to the problem of checking the validity of a first order formula.
Obviously, it can be done automatically by using a prover.

In general, implicit definability means that it is possible to define a query using only a set
of database predicates . In order to know what is the exact definition of this query based on
database predicates we need a notion of explicit definability:

Definition 4.4 (Explicit definability) A query Q[X] is explicitly definable from the database

predicates PDB under constraints KB iff there is some formula Q̂[X] in first order logic such

as KB |= ∀Q[X] ↔ Q̂[X] and σ(Q̂) ⊆ PDB

Related to the relationship between implicit definablility and explicit definability we have the
following theorem :

Theorem 4.5 (Projective Beth definability) If a query Q is implicitly definable from the

database predicates PDB under constraints KB, then it is explicitly definable as a formula Q̂
in first order logic with σ(Q̂) ∈ PDB under constraints KB

This theorem can be proved by showing what Q̂ is in the next subsection.

4.1.2 Query rewriting

As we have already mentioned in the previous part, if the query is implicitly definable then
there exists an formula as its explicit definition. In this subsection we shall prove that there is
a constructive way to find the formula thanks to Craig’s interpolant.

Figure 4.1: Query rewriting process

In general, the first steps of query rewriting framework are in the figure 4.1 where the
‘Construct explicit definition’ module works based on this theorem :

Theorem 4.6 (Interpolants as definitions) Let Q be a query (with n ≥ 0 free variables)
implicitly defined from the database predicates PDB under the constraints KB. Then, the closed
formula with c0, ..., cn−1 distinct constant symbols in C not appearing in KB or Q:

((
∧
KB) ∧Q[X/c0,...,cn−1])→ ((

∧
K̃B)→ Q̃[X/c0,...,cn−1]) (4.1)

35

CHAPTER 4. QUERY REWRITING FRAMEWORK

is valid, and its interpolant Q̂[c0,...,cn−1/X] defines the query Q explicitly from the database
predicates PDB under the constraints KB.

Proof
First we will prove that if Q is implicitly definable then the formula 4.1 is valid. Apply-

ing syntactic definition of implicit definability: KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X]. There-
fore, when we replace X by a set of constants c0, ..., cn−1, the following formula is valid

(
∧
KB ∧

∧
K̃B)→ (Q[X/c0,...,cn−1] ↔ Q̃[X/c0,...,cn−1]). As a consequence, 4.1 is valid.

Next, we have to prove KB |= (Q[X] ↔ Q̂[c0,...,cn−1/X]) where Q̂[X/c0,...,cn−1] is a Craig inter-

polant of 4.1. Since Q̂[X/c0,...,cn−1] is an interpolant:

1. ((
∧
KB) ∧Q[X/c0,...,cn−1])→ Q̂[X/c0,...,cn−1]

Then : KB |= (Q[X/c0,...,cn−1] → Q̂[X/c0,...,cn−1])

2. Q̂[X/c0,...,cn−1] → ((
∧
K̃B)→ Q̃[X/c0,...,cn−1])

Then : K̃B |= (Q̂[X/c0,...,cn−1] → Q̃[X/c0,...,cn−1]).

Since σ(Q̂) ⊆ PDB , the relation KB |= (Q̂[X/c0,...,cn−1] → Q[X/c0,...,cn−1]) holds as well

From(1)(2) we have expected statement.

Last but not least, since σ(Q̂[X/c0,...,cn−1]) ⊆ PDB then σ(Q̂[c0,...,cn−1/X]) ⊆ PDB .

With above statements, Q̂[c0,...,cn−1/X] is really an explicit definition of Q

4.1.3 Query answering

Now we shall consider the answer of original query using the answer of its rewriting. Since the
rewritten query contains only database predicates, we will mention as well a set of conditions
to reduce rewriting answering problem into model checking one. More precisely, we have the
following theorem:

Theorem 4.7 (Domain independent rewriting) Let DB be a database satisfying a set of

constraints KB, and Q[X] be implicitly definable from PDB under KB and Q̂ is an explicit

definition Q. If the rewritten query Q̂[X] is domain independent and C satisfies standard name
assumption, then:

{ΘCX | for every IDB ∈M(KB) : IDB |= Q[X/ΘC
X]} =

{Θ
CDB∪CQ̂
X |I

(CDB∪CQ̂)

(DB) |PDB |= Q̂
[X/Θ

CDB∪CQ̂
X]

}

where CQ̂ is set of constants in Q̂

Intuitively, this theorem states that if the rewriting is domain independent and standard name
assumption holds for all constants in C then the problem of answering Q coincides with model
checking problem. In the other words, it shows a way to get rid of knowledge base. Notice
that to make this theorem holds, we need standard name for all constants in C as in relational
databases. By using this assumption, we loose the expressiveness of first order constants but
reduce the complexity of query answering. From theoretical point of view, this assumption
makes sense since in relational database, constants in queries have standard name, therefore,
the set of constants in Q̂ which may contain both constants in Q and KB should satisfy this
assumption. From practical point of view, in order to evaluate queries, the universal relation
which contains all constants in C might be used as a table in the database, then these constants
should have standard names as well.

A proof of this theorem can be implied from the following lemmas:

Lemma 4.8 Let DB be a database satisfying a set of constraints KB, and Q[X] be implicitly

definable from PDB under KB and Q̂ is an explicit definition Q. If the rewritten query Q̂[X] is

36

CHAPTER 4. QUERY REWRITING FRAMEWORK

ground domain independent and C satisfies standard name assumption, then:

{ΘCX | for every IDB ∈M(KB) : IDB |= Q[X/ΘCX]} =

{ΘCX | for every ∆I ⊇ C : I∆I

DB |PDB |= Q̂[X/ΘCX]}

Proof
Let S1 = {ΘCX | for every IDB ∈M(KB) : IDB |= Q[X/ΘC

X]}
and S2 = {ΘCX | for every ∆I ⊇ C : I∆I

DB |PDB |= Q̂[X/ΘCX]}.
First, we show S2 ⊆ S1. Let s = ΘCX ∈ S2. Assume that there is IDB ∈ M(KB) such that

IDB 6|= Q[X/ΘCX]. Since Q and Q̂ are equivalent under KB then IDB 6|= Q̂[X/ΘCX]. Because Q̂

contains only database predicates, IDB |PDB 6|= Q̂[X/ΘCX]. Therefore there is an ∆I is domain

of IDB such that: I∆I

DB |PDB 6|= Q̂[X/ΘCX], which is a contradiction because s ∈ S2.

Now we prove S1 ⊆ S2 by contradiction. Assume that there is s = ΘCX ∈ S1 but s /∈ S2.

Therefore, there is a domain ∆I such that: I∆I

DB |PDB 6|= Q̂[X/s]. Call JDB is a model of

KB. We have: .I
∆I

DB |PDB = .JDB |PDB because DB contains only PDB . Then, since Q̂ is ground

domain independent, I∆J

DB |PDB 6|= Q̂[X/s] (1). Furthermore, because we have standard name
assumption for C then for every constant c ∈ C: cI = cJ . Therefore we can extend the

interpretation function of I∆I

DB |PDB to interpretation function of J (2). From (1) and (2), we

have J 6|= Q̂[X/s]. But J is a model of KB and Q[X/s] and Q̂[X/s] are equivalent under KB
then J 6|= Q[X/s]. In the other words, s /∈ S1 - which is a contradiction.

Lemma 4.9 If the rewritten query Q̂[X] is domain independent and C satisfies standard name
assumption then:

{ΘC
X | for every ∆I ⊇ C : I∆I

DB |PDB |= Q̂[X/ΘC
X]} =

{Θ
CDB∪CQ̂
X |I

CDB∪CQ̂
DB |PDB |= Q̂

[X/Θ
CDB∪CQ̂
X]

}

Proof
Let S3 = {ΘC

X | for every ∆I ⊇ C : I∆I

DB |PDB |= Q̂[X/ΘC
X]}

and S4 = {Θ
CDB∪CQ̂
X |I

CDB∪CQ̂
DB |PDB |= Q̂

[X/Θ
CDB∪CQ̂
X]

}.

Let s be a substitution such that s ∈ S4. We have: I
CDB∪CQ̂
DB |PDB |= Q̂[X/s]. Since Q̂ is domain

independent then for any domain ∆I such that: ∆I ⊇ C ⊇ CDB ∪ CQ̂, I∆I

DB |PDB |= Q̂[X,s].

Therefore s ∈ S3(3).
Let s′ be a substitution such that s′ ∈ S3. Consider an arbitrary domain ∆ ⊇ C. Let I is a
first order interpretation such that ∆I = ∆ and .I = .I∆

DB |PDB .
We have: act− range(s′) ⊆ ∆I and I, s′ |= Q̂ because s′ ∈ S3

Let J is a first order interpretation such that ∆J = CDB ∪ CQ̂ and .J = .I∆
DB |PDB = ∆I .

Since the query Q̂ is domain independent and .J = .I , we have: act − range(s′) ∈ J and

J, s′ |= Q̂. In the other words, s′ ∈ S4(4).
From (3) and (4), S3 = S4.

Domain independence of rewritings not only reduces the complexity of query answering
to complexity of model checking as in theorem 4.7 but also is needed criteria to transform
the rewritings to queries in relational languages. Unfortunately, it is still a open question
about general constraints of knowledge bases and original queries which guarantee the domain
independence of rewritten queries. However, as we will show in the next section, together with
some conditions of knowledge bases and queries, there is a method to have domain independent
rewritings.

37

CHAPTER 4. QUERY REWRITING FRAMEWORK

4.2 Safe range rewriting

In this section, we shall consider safe range knowledge base and safe range original queries
as input of our framework and show that this input will guarantee domain independence of
output if we use tableau method. From practical point of view, the assumption about safe
range properties of KB and Q is feasible because the most important typical constraints (as in
the section 2.4) considered in the database literature are safe range. Furthermore, it is also an
efficient way to guarantee the domain independence of input.

First, as a negative result, we do not have domain independent/safe range output in general
if the input is safe range. A counterexample is as followed:

Example 4.1 Let KB be:

∀x, y(V1(x, y)↔ ∃z, v(R(z, x) ∧R(z, v) ∧R(v, y)))

∀x, y(V2(x, y)↔ ∃z(R(x, z) ∧R(z, y)))

∀x, y(V3(x, y)↔ ∃z, v(R(x, z) ∧R(z, v) ∧R(v, y)))

and Q(x, y) be ∃z, v, u(R(z, x) ∧R(z, v) ∧R(v, u) ∧R(u, y)) as in [22].

Applying our rewriting framework, we have Q̂(x, y) = ∃z(V1(x, z)∧∀v(V2(v, z)→ V3(v, y)))

is an rewriting of Q. It is easy to see that all sentences in KB and Q are safe range while Q̂ is
not safe range/domain independent. However, if we replace all free variables of Q̂ by constants
then the result will be safe range.

Motivated by this intuition, within the first subsection, we will introduce the notion of ‘ground
safe range’ and its role to have domain independent rewriting. In the second one, we shall prove
if input is safe range then output computed by tableau based method is ground safe range. Last
but not least, a less expensive way to transform the ground safe range rewriting to safe range
one will be taken into account.

4.2.1 Ground safe range

Definition 4.10 (Ground safe range) A query Q[X] is ground safe range iff QX/ΘC
X

is safe

range for every substitution ΘC
X

In the next theorem, we will see the role of ground safe range in query answering problem.
More precisely, ground safe range queries can be transformed to the safe range ones (which are
also domain independent) without changing the answers.

Theorem 4.11 (Ground safe range rewriting) Let us extend the database DB with a new
unary relation TC (named universal predicate) containing all the constants in C. If the rewritten

query Q̂[X] is a ground safe range query, then:

{ΘCX | for every IDB ∈M(KB) : IDB |= Q[X/ΘCX]} =

{Θ
CDB∪CQ̂
X |I

CDB∪CQ̂
DB |PDB |= (Q̂[X] ∧ TC(x1)) ∧ ... ∧ TC(xn))

[X/Θ
CDB∪CQ̂
X]

}

Proof Sketch. Since ground safe range implies ground domain independent then from lemma
4.8 we have :

{ΘCX | for every IDB ∈M(KB) : IDB |= Q[X/ΘCX]} =

{ΘCX | for every ∆I ⊇ CDB : I
(∆I)
(DB)|PDB |= Q̂[X/ΘCX]}

Since we just consider all substitutions over C then then adding TC restriction for Q̂’s free
variables as above does not affect the meaning of the query. Moreover, it’s easy to see that
Q̂[X] ∧ TC(x1)) ∧ ... ∧ TC(xn))

[X/Θ
CDB
X]

is a safe range formula (because Q̂[X] is ground safe

range), then it is domain independence. Therefore, we can apply the lemma 4.9 for this query
in order to receive the desirable answer.

38

CHAPTER 4. QUERY REWRITING FRAMEWORK

4.2.2 Tableau based rewriting

In this subsection, we show that if the interpolant in theorem 4.6 is computed by tableau
method considered in 3.2.1 then the rewritings of safe range queries over safe range knowledge
bases are ground safe range. In order to prove it, we need following propositions:

Proposition 4.12 ϕ1 ∧ ϕ2 is safe range and closed iff ϕ1 and ϕ2 are safe range and closed.

Proof
We have :

• rr(ϕ1 ∧ ϕ2) = rr(ϕ1) ∪ rr(ϕ2)

• free(ϕ1 ∧ ϕ2) = free(ϕ1) ∪ free(ϕ2)

• rr(ϕ1) = ⊥ or rr(ϕ1) ⊆ free(ϕ1)

• rr(ϕ2) = ⊥ or rr(ϕ2) ⊆ free(ϕ2)

• ϕ1 ∧ ϕ2 is closed iff free(ϕ1) = free(ϕ2) = ∅

• ϕ1 is closed iff free(ϕ1) = ∅

• ϕ2 is closed iff free(ϕ2) = ∅

• ϕ1 ∧ ϕ2 is safe range iff rr(ϕ1 ∧ ϕ2) = free(ϕ1 ∧ ϕ2)

• ϕ1 is safe range iff rr(ϕ1) = free(ϕ1)

• ϕ1 is safe range iff rr(ϕ2) = free(ϕ2)

Therefore :

• ϕ1 ∧ ϕ2 is closed iff ϕ1 and ϕ2 are closed

• ϕ1 ∧ ϕ2 is closed, safe range iff ϕ1 and ϕ2 are closed, safe range

Proposition 4.13 ϕ1 ∨ ϕ2 is safe range and closed iff ϕ1 and ϕ2 are safe range and closed.

Proof
We have :

• rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

• free(ϕ1 ∨ ϕ2) = free(ϕ1) ∪ free(ϕ2)

• rr(ϕ1) = ⊥ or rr(ϕ1) ⊆ free(ϕ1)

• rr(ϕ2) = ⊥ or rr(ϕ2) ⊆ free(ϕ2)

• ϕ1 ∨ ϕ2 is closed iff free(ϕ1) = free(ϕ2) = ∅

• ϕ1 is closed iff free(ϕ1) = ∅

• ϕ2 is closed iff free(ϕ2) = ∅

• ϕ1 ∨ ϕ2 is safe range iff rr(ϕ1 ∨ ϕ2) = free(ϕ1 ∨ ϕ2)

• ϕ1 is safe range iff rr(ϕ1) = free(ϕ1)

• ϕ1 is safe range iff rr(ϕ2) = free(ϕ2)

Therefore :

39

CHAPTER 4. QUERY REWRITING FRAMEWORK

• ϕ1 ∨ ϕ2 is closed iff ϕ1 and ϕ2 are closed

• ϕ1 ∨ ϕ2 is closed, safe range iff ϕ1 and ϕ2 are closed, safe range

Proposition 4.14 ∀~xϕ(~x) is closed and safe range then ϕ(~t) is closed and safe range where ~t
are constants.

Proof
Obviously, if ∀~xϕ(~x) is closed then ϕ(~t) is closed.
Assume that ϕ(~t) is not safe range. Since it’s closed then rr(SRNF (ϕ(~t))) = ⊥
⇒ SRNF (ϕ(~t)) must contain a subformula which is in the form ∃~zϕ′(~t, ~z)
where ~z 6⊆ rr(SRNF (ϕ′(~t, ~z)))
⇒ SRNF (ϕ(~x)) must contain a subformula which is in the form ∃~zϕ′(~x, ~z)
where ~z 6⊆ rr(SRNF (ϕ′(~x, ~z)))
⇒ SRNF (¬ϕ(~x)) must contain a subformula which is in the form ∃~zϕ′(~x, ~z)
where ~z 6⊆ rr(SRNF (ϕ′(~x, ~z))) because pushing negation does not effect the formula under ∃
⇒ rr(SRNF (¬ϕ(~x))) = ⊥
⇒ rr(SRNF (¬∃~x¬ϕ(~x))) = ⊥
⇒ rr(SRNF (∀~xϕ(~x))) = ⊥
∀~xϕ(~x) is not safe range
⇒ Contradiction.

Proposition 4.15 ∃~xϕ(~x) is closed and safe range then ϕ(~t) is closed and safe range where ~t
are constants.

Proof
Of course, if ∃~xϕ(~x) is closed then ϕ(~t) is closed.
Assume that ϕ(~t) is not safe range. Since it’s closed then rr(SRNF (ϕ(~t))) = ⊥
⇒ SRNF (ϕ(~t)) must contain a subformula which is in the form ∃~zϕ′(~t, ~z)
where ~z 6⊆ rr(SRNF (ϕ′(~t, ~z)))
⇒ SRNF (ϕ(~x)) must contain a subformula which is in the form ∃~zϕ′(~x, ~z)
where ~z 6⊆ rr(SRNF (ϕ′(~x, ~z)))
⇒ rr(SRNF (ϕ(~x))) = ⊥
⇒ rr(SRNF (∃~xϕ(~x))) = ⊥
⇒∃~xϕ(~x) is not safe range
⇒ Contradiction.

Based on these propositions, we have the following theorem :

Theorem 4.16 (Ground safe range) Given a set of constraints KB, a query Q which is

implicitly definable from PDB, if KB and Q are safe range then there is a rewritten Q̂ of Q
which is ground safe range.

Proof
First we will show that if φ and ψ are closed and safe range and φ → ψ is valid then so is
their interpolant. Assume T is a biased tableau of of φ ∧ ¬ψ. Therefore the root node if T
is S) = {L(φ), R(¬ψ)}. Based on all the tableau expansion rules and above propositions we
have at every expansion step where S = {L(ϕ1), ..., L(ϕn), R(ψ1), ..., R(ψm)}, ϕ1, ..., ϕn and
ψ1, ..., ψm are safe range and closed(*) .
Now we have to prove that the interpolant at each step is safe range and closed (**) by induction
on the shape of proof and the set of rules in 3.2.1.

• Rules for closed branches: It’s trivial because ϕ and ¬ϕ are safe range and closed because
of (*)

40

CHAPTER 4. QUERY REWRITING FRAMEWORK

• Rules for propositional case :
For the rule (p1)(p2)(p3)(p4) nothing changes, so we don’t have to prove
For the rule (p5), apply the proposition 4.19 then (**) holds
For the rule (p6), apply the proposition 4.20 then (**) holds

• Rules for first order case :
For the rule (f1) (f2) (f3) nothing changes, so we don’t have to prove
For the rule (f4), since c does not occur in {ϕ1, ..., ϕn} then the only case to have c in I

is that S contains R(¬ϕ(c)). Therefore S ∪ {L(ϕ(c))} int→ I = ϕ(c). Since ∀x.ϕ(x) is safe
range (due to (*)) then ∀x.I[c/x] is safe range too
For the rule (f5), since c does not occur in {ψ1, ..., ψm} then the only case to have c in

I is that S contains L(¬ϕ(c)). Therefore S ∪ {R(ϕ(c))} int→ I = ¬ϕ(c). Since ∀x.ϕ(x) is
safe range (due to (*)) then ∃x.¬I[c/x] is safe range too

• Rules for equality : Since all the input formulas are closed and do not contain function
symbols then all equations are ground. Therefore, they do not influence the safe range
property of interpolant in each step.

As a consequence, since Q(~c), KB, KB′,¬Q(~c) are closed and safe range then so is the inter-

polant Q̂(~c) of KB ∧Q(~c) and KB′ → Q′(~c).

4.2.3 From ground safe range to safe range

As we see in above subsection, ground safe range property of rewritings is enough to transform
them to a domain independent one. In the other words, if rewritten queries are ground safe
range then we can reduce the original query answering problem to model checking. Now, let
us consider conditions of rewritings to use standard relational algebra technique to solve the
model checking problem. Based on the Codd’s theorem (theorem 2.10) we comprehend that
in order to transform a first order query to a query in relational algebra (and then to SQL
query), the first order query should be safe range. From the theorem 4.11, it is obvious that if
a query is ground safe range, then we can convert it to a safe range one by conjunction with
universal predicate for each free variable. However, the safe range query is expensive in term
of query answering because we have to check substitutions of each variable for each constant in
the database.

Motivated by above reason, we shall do one more step in order to transform the ground safe
range rewritten query to a less expensive safe range one by the following assumption on the set
of constraints KB and PDB :

Assumption 4.17 Let extend the signature of KB and PDB by a set of finite unary predicate
UP . For each predicate P ∈ Σ(KB) add the following safe range axiom to KB:

∀x1, ..., xn(P (x1, ..., xn)→ P1(x1) ∧ ... ∧ Pn(xn))

where Pi ∈ UP

It is obvious that these axioms are feasible in practical databases because they mention each
constant should belong to one category. For example, given a predicate Student(x, y) where
x is his name and y is his age then we might have Student(x, y) → Name(x) ∧ Age(y) or
Student(x, y) → String(x) ∧ Int(y). Notice that in the worst case, all predicates in UP are
universal predicate.

Basing on above assumption, we have the following theorem:

Theorem 4.18 (Safe range rewriting) Given a safe range knowledge base KB, a safe range

query Q[X] and Q̂[X] is its ground safe range rewriting over KB, there is a safe range query

which has the same answer as to Q̂[X] and does not contain universal predicate.

41

CHAPTER 4. QUERY REWRITING FRAMEWORK

Proof
We will prove this theorem by a constructive proof. Firstly, since Q is a safe range query then
for all xi ∈ X, there will be a positive predicate P taking xi as its j−th argument. Secondly, let
φ := Q̂[X], for each xi ∈ X which is not range restricted in Q̂ (xi ∈ X\rr(Q̂)), φ := φ∧ Pj(xi).
Finally, after this process we have φ is safe range and φ and Q̂ have the same answer.
Moreover, call SF (Q̂) is the standard transformation of Q̂ to safe range as in the theorem 4.11.

It is easy to see that in general answering SF (Q̂) is harder than answering φ because for every
P ∈ UP , P ⊆ TC where TC is the universal predicate .

4.3 Applied framework for ALC
In this section, we shall consider an application of previous framework for ALC where database
constraints here are ALC’s axioms, queries are ACL concepts and databases are expressed via
DBoxes as in the paper [26].

4.3.1 DBox

Let us formalize the notion of DBox in this subsection. Let NC and NR be countably infinite
sets of concept and role names respectively and NI be a countably infinite set of individual
names. The syntax of DBox is similar to syntax of normal ALC ABox such that:

• σD is a signature where σD(C) ⊆ NC is the set of DBox concept names, σD(R) ⊆ NR is
the set of DBox roles, σD(I) ⊆ NI is the set of DBox individuals.

• A(a) and R(a, b) are Dbox assertions where A ∈ σD(C), R ∈ σD(R) and a, b ∈ σD(I)

• σD(P) = σD(C) ∪ σD(R) is the set of DBox predicates.

In term of semantic, an interpretation I = (∆I , .I) is a model of a DBox D (written I |= D) if :

• aI = a for every DBox individual a ∈ σD(I)

• For every A ∈ σD(C) and u ∈ σD(I), u ∈ AI iff A(u) ∈ D

• For every R ∈ σD(R) and u, v ∈ σD(I), (u, v) ∈ RI iff R(u, v) ∈ D

From above semantic, one can see it is different from the semantic of ABox since the set of
‘true’ assertions is bounded by DBox and nothing else. We call the set of individuals in σD(I)
appearing in D is active domain of D.

In the combination with a TBox T : D is satisfiable with respect to T iff there is a model of
D is also a model of T . Given an arbitrary concept C and an individual a, (T ,D) |= C(a) iff
for every model I of T and D, I is also a model of C(a). Similarly, D |= C(a) iff (∅,D) |= C(a)
where ∅ is the empty TBox.

4.3.2 The framework

The query rewriting problem in this case can be stated as: given a TBox T , a DBox D which
satisfies T and a query which is actually an ALC concept Q, check the implicit definability of
Q over a set of DBox predicates P of D. If it is the case then find an explicit definition.

Before going to detail definitions and theorems, let us call σ(Q, T) = {B1, ..., Bm, D1, ..., Dm}
as a set of role names and concept names occurring in Q or T where {D1, ..., Dm} ⊆ σD(P)
and {B1, ..., Bm} ∩ σD(P) = ∅.

With these notions we have :

Definition 4.19 (Implicit definability in ALC) Let a concept φ′ be like φ but with all oc-
currences of B1, ..., Bm replaced by distinct occurrences of B′1, ..., B

′
m /∈ σ(Q, T)∪σD(P). T ′ and

Q′ are defined similarly. Then Q is implicitly definable from D1, ..., Dm in T iff Q ≡T ∪T ′ Q′.

42

CHAPTER 4. QUERY REWRITING FRAMEWORK

Definition 4.20 (Explicit definability in ALC) Q is explicitly definable from D1, ..., Dn in
T iff there is some concept C such that Q ≡T C and σ(C) ⊆ {D1, ..., Dn}

For the relationship between implicit definability and explicit definability, similar to the general
framework, the following theorem holds:

Theorem 4.21 (Beth definability for ALC with TBox) If Q is implicitly definable from
D1, ..., Dn in T then Q is explicitly definable from D1, ..., Dn

Proof From the definition of implicit definability we have Q ≡T ∪T ′ Q′ (*). From previous
chapter we also know that the interpolant theorem holds in the case of ALC with TBox.
Therefore, from (*) there is an interpolant C which is an ALC concept between Q and Q′

such as :

1. Q vT ∪T ′ C

2. C vT ∪T ′ Q′

3. σ(C) ⊆ σ(Q, T) ∩ σ(Q′, T ′). I

Since we also have Q′ v Q then combine with (2), we have Q ≡T ∪T ′ C (**). In the other side,
σ(Q, T) ∩ σ(Q′, T ′) ⊆ {D1, ..., Dm} therefore σ(C) ⊆ {D1, ..., Dm} (***). From both (**) and
(***), we have C is exact explicit definition of Q in T .
Notice that C is constructive because there is a constructive proof of interpolant theorem for
ALC with TBox as we already mentioned in 3.2.2.

4.3.3 Ground safe range theorem

In order to apply the theorem 4.11 to reduce query answering problem to model checking in
DBox, we need ground safe range of the rewritten query where a concept is ground safe range
if its equivalent first order formula is ground safe range. Fortunately, we have the following
theorem :

Theorem 4.22 (Ground safe range theorem for ALC concept) Every concept in ALC
is ground safe range.

Proof
We will prove this theorem by induction on the structure of concept C. Without loss of
generality, we can assume that C is in negation normal form. For a concept C, we call f(C) is
the first order formula corresponding to C

• Base cases : For atomic concept A where f(A)(x) = A(x), we have A(a) is safe range for
every constant a. Therefore A is ground safe range. For concept ¬A, f(¬A)(x) = ¬A(x)
and ¬A(a) is also safe range. Then, ¬A is ground safe range as well.

• Assume C = C1 ∧ C2 and C1, C2 are both ground safe range. We have: f(C)(x) =
f(C1)(x)∧ f(C2)(x). Since f(C1)(a), f(C2)(a) are safe range then so is f(C)(a) . There-
fore f(C)(x) is ground safe range.

• Assume C = C1 ∨ C2 and C1, C2 are both ground safe range. We have: f(C)(x) =
f(C1)(x)∨ f(C2)(x). Since f(C1)(a), f(C2)(a) are safe range then so is f(C)(a) . There-
fore f(C)(x) is ground safe range.

• Assume C = ∀R.C1 then f(C)(x) = ∀y(R(x, y)→ f(C1)(y)). We have SRNF (f(C)(x)) =
¬∃y(R(x, y)∧¬f(C1)(y)), when we replace x by a constant a, we have rr(SRNF (f(C)(a))) =
∅ = free(SRNF (f(C)(x))). Therefore f(C)(x) is ground safe range.

• Assume C = ∃R.C1 then f(C)(x) = ∃y(R(x, y)∧f(C1)(y)). We have SRNF (f(C)(a)) =
f(C)(a), when we replace x by a constant a, we have rr(SRNF (f(C)(a))) = ∅ =
free(SRNF (f(C)(a))). Therefore f(C)(x) is ground safe range.

43

CHAPTER 4. QUERY REWRITING FRAMEWORK

Assume Q̂ is the concept that explicitly defines Q in T over D. Apply this theorem and similar
arguments as in the proof of theorem 4.11 one can see that: {a|(T ,D) |= Q(a)} = {a|D |= Q̂(a)}
and A(x) = f(Q̂)(x)∧TD(x) will be the safe range query which gives the expected answer where
TD is the relation containing all constants in σD(I).

4.4 Applied framework for guarded fragment

In this subsection, we shall consider a decidable fragment of first order logic named ‘guarded
fragment ’ (GF), which has been applied as a first order view for description logic. In term of
syntax, the set of GF-formulas is the smallest set such that :

• R(t1, ..., tn) is an atomic formula where R is a n − ary predicate and ti is a constant or
variable.

• If φ is a GF formula then so is ¬φ

• If φ, ψ are GF formulas then φ ∧ ψ and φ ∨ ψ are in GF as well

• If G is an atomic GF-formula, φ ∈ GF , and X is a finite, non-empty set of variables such
as X ⊆ free(φ) ⊆ free(G) then ∃X.G ∧ φ and ∀X.G → φ are GF-formulas. G is called
as the guard of the quantifier.

In term of semantic, given an interpretation I = (∆I , .I) and an variable assignment A which
assigns each variable to an element in ∆I . Given two assignments A and B, we say B in the
interpretation I is an X − variant of A iff xA = xB for every x /∈ X.

• cI,A = cI where c is a constant

• xI,A = xA where x is a variable

• I,A |= R(t1, ..., tn) iff (tI,A1 , ..., tI,An) ∈ RI

• I,A |= ¬φ iff I,A 6|= φ

• I,A |= φ ∧ ψ iff I,A |= φ and I,A |= ψ

• I,A |= φ ∨ ψ iff I,A |= φ or I,A |= ψ

• I,A |= ∀X.G → φ iff I,B |= G implies I,B |= φ for every assignment B in I that is an
X − variant of A

• I,A |= ∃X.G ∧ φ iff I,B |= G and I,B |= φ for some assignment B in I that is an
X − variant of A

Related to Craig’s interpolant theorem and Beth’s definability theorem, in GF the former does
not hold [15] while the latter is still satisfied. Therefore, we can apply our query rewriting
framework where all KB constraints and implicitly definable queries are in GF in order to
receive a rewritten query in GF as well. Furthermore, all queries in GF have very nice property
that we called ‘ground safe range’ as in this theorem:

Theorem 4.23 (Ground safe range of GF) Queries in the guarded fragment GF of first
order logic are ground safe range.

Proof Sketch. One can verify that the ground instance of a GF formula is always safe range
based on induction in the shape of the formula.

Therefore, we can also apply theorem 4.11 for rewritings in GF .

44

Chapter 5
Rewriting tool

In this chapter, we shall describe our query rewriting tool which is built on top of a well-know
automated theorem prover named Prover9. Since it is a piece of software, we follow the typical
software development process to illustrate our tool.

5.1 Requirements

As we have mentioned in above chapters, our crucial goal is developing a software system which
allows users query using a richer language (knowledge base language) than database language.
As a very first version of this software, which is also support researchers explore more properties
of the theoretical framework, the rewriting tool mentioned in this chapter should fulfill following
requirements:

5.1.1 System features

• Checking implicit definability : Given a knowledge base, a query and a set of database
predicates, the tool should return an answer about the implicit definability of the query.

• Finding the rewritten query : This feature contains the previous one: if query is not
implicitly definable, system will return a corresponding answer, if query is implicitly
definable, it will return the rewritten query. Notice that in the case query is implicitly
definable but system cannot find a rewritten query in a fixed period of time, the rewriting
process should stop and returns a response that it’s timeout.

• Checking the consistency of the knowledge base: Given a knowledge base, the tool should
tell users whether this knowledge base is consistent or not.

• Exploring safe range property : Given a knowledge base or a query, the tool should respond
users about the safe range property of the input. This feature also should work for the
rewritten query (if it is available).

5.1.2 External interface requirements

• User interface: In term of user interaction, the tool should allow users enter logic formulas
in a convenient way as in normal syntax of first order logic. Return formulas have to follow
this syntax as well.

• Software interfaces: In order to support as many as possible number of users, the tool
should be implemented in an independent platform.

• Communication interfaces: From the communication with other logic systems perspective,
the tool should also support some usual logical syntaxes except the one mention in the first

45

CHAPTER 5. REWRITING TOOL

requirement such as: the syntax proposed by TPTP [27] and the syntax in Common Logic
standard [18]. Specification of these syntaxes will be summarized in the next subsections.

5.1.3 TPTP syntax

TPTP stands for ‘Thousands of Problems for Theorem Provers’, which is the official library for
automated theorem proving (ATP) systems. This library is also used as the set of problems
that all provers attending the The World Championship for Automated Theorem Proving [6]
have to solve. According to the website of TPTP [27], the TPTP supports ATP community in
terms of :

• A complete set of ATP test problems with the comprehensive related information for each
problem.

• Size varying of generic problems.

• A tool to transform a problem into some syntaxes of common ATP systems.

• Guidelines for evaluation an ATP system.

• Syntactic requirements for input and output of ATP systems.

As a consequence, the TPTP syntax is very popular in ATP community. According to TPTP
syntax, a TPTP first order formula is defined similarly as a normal first order formula excepts
:

• The complete restriction for variable names, constants names, function names and predi-
cate names.

• The symbols → and ↔ are replaced by => and <=> respectively.

• The symbols ∧ and ∨ are replaced by & and | respectively

• The symbols ∀ and ∃ are replaced by ! and ? respectively.

• The set of quantified variables is denoted by [x1, ..., xn]

• If φ is a formula then so are ![x1, ..., xn] : (φ) and ?[x1, ..., xn] : (φ)

• φ a binary connective ψ is formula iff φ and ψ are unitary formulas where an unitary
formula is an atomic formula, a quantified formula or a formula which is bounded by (
and).

An example of a TPTP first order formula is given as follows:

Example 5.1

?[X] : (lives(X)&killed(X, agatha))

5.1.4 Common Logic syntax

Common Logic is a framework for logic-based languages in order to standardize syntax and
semantic for knowledge exchange in information systems. It has been recognized as an ISO
standard [18] since 2007. This standard includes the abstract syntax and semantic of Common
logic which actually basing on first order predicates and its application for following dialects :

• Common Logic Interchange Format (CLIF)

• Conceptual Graph Interchange Format (CGIF)

• XML-based notation for Common Logic (XCL)

In this part we consider only Common Logic Interchange Format. The syntax of a CLIF formula
is defined recursively as follows :

46

CHAPTER 5. REWRITING TOOL

• If t is a variable or a constants then t is a term

• If f is a function with arity n and t1, ..., tn are terms then (ft1...tn) is a term

• If P is a predicate with arity P and t1, ..., tn are terms then (Pt1...tn) is an atomic formula

• t1 and t2 are term then (= t1t2) is an atomic formula

• If φ is an formula then so is (not φ)

• If φ and ψ are formula then so is (bc φ ψ) where bc ∈ {and, or, if, iff}

• If φ is a formula and x1, ..., xn are variables then (exists(x1...xn)φ) and (forall(x1...xn)φ)
are formulas.

An example of a CLIF formula is given as follows:

Example 5.2

(exists (x y) (and (Red x) (not (Ball x)) (On x y) (not (and (Table y) (not (Blue y))))))

5.2 Design and support tools

5.2.1 Logic formula parser

Listing 5.1: An example of ANTLR grammar

grammar Sample ; //Name o f gramma

opt ions {
language = Java ; //Language o f generated code

}

@header {
package a . b . c ; //Package f o r par s e r c l a s s

}

@lexer : : header { //Package f o r l e x e r c l a s s
package a . b . c ;

}

program //Top l e v e l r u l e
: ’ program ’ IDENT ’= ’

(constant | va r i ab l e | f unc t i on | procedure | typeDecl)∗
’ begin ’
statement ∗
’ end ’ IDENT ’ . ’

;

constant //Rule
: ’ constant ’ IDENT ’ : ’ type ’ := ’ exp r e s s i on ’ ; ’
;

In this section, we shall take into account the tool under the designing process where all
necessary softwares and techniques will be considered as well. To fulfill the software interfaces
requirement, we will choose Java language to build our tool. Since the input of the tool is
first order formulas entered by users then building a good logic formula parser is one of crucial
tasks. However, we use Java as the programming language where only arithmetic expressions
are parsed automatically, therefore we have to build the parser by ourself. In fact, the parser
has to be sufficient because the system need to ‘understand ’ fully the meaning of each sub part
of the formula. General speaking, building this kind of parsers from scratch is not so easy.
Fortunately, there is a good software to support us building the parser automatically named
ANTLR [2].

47

CHAPTER 5. REWRITING TOOL

ANTLR stands for ANother Tool for Language Recognition, which is a framework for ‘con-
structing recognizers, interpreters, compilers, and translators from grammatical descriptions
containing actions in a variety of target languages’ such as : Java, C++, Python, and so on
[2]. In the other words, with the support of ANTLR, users just need to define the grammar
by introducing grammar rules and then ANTLR will generate parser code for corresponding
language. General speaking, ANTLR provides:

• A complete grammar development environment named ANTLRWorks.

• Complete and detail tutorials for the syntax of grammars. An example of ANTLR gram-
mar is given in listing 5.1

• An integrated grammar development framework for Eclipse with visualized interpreters.

Figure 5.1: Interpreter for ‘all x (A(x))’

With the support of ANTLR, grammar of a first order formula can be defined recursively
corresponding to normal first order syntax. Obviously, the restriction for name of predicates,
variables, constants and parentheses should be unambiguous in order to have a correct parser.
After defining grammar, developers also can embed code for data structure corresponding to
the formula such as trees or recursive classes.

For example, given a complete grammar and a string ‘all x(A(x))’, a interpreter for this
string is describe in a tree as in the figure 5.1

5.2.2 Prover9

From previous chapters, we all know that the problem of checking implicit definability and
finding explicit definition can be reduced to the problem of finding a proof for a valid formula.

48

CHAPTER 5. REWRITING TOOL

More precisely, in order to find an explicit definition, one has to know a detail proof and then
construct an interpolant from this proof based on some methods mentioned in chapter 3. In
order to perform it, we do not build an algorithm for scratch but use some available automated
theorem proving systems. In general, a prover where the tool can be built on top should have
the following characteristics:

• Deciding whether a formula is valid or not in a short time.

• Giving a detail proof in a well formed structure such that it is ‘understandable’ by a
computer program.

• Providing interface to communicate with other systems.

• Having good referent documents, manuals as well as a good supporting community.

Figure 5.2: Ivy output of a Prover9 proof

Based on above criterias we do not choose some tableau based provers for description logic
like: Pellet, Fact++ because these provers do not return detail proofs. In terms of resolution
systems, there are several candidates such as: Vampire, Prover9, E. Among them, we choose
Prover9 and do not pick either Vampire or E even they are faster because their documentation
and interface for other systems are quite poor.

Prover9 is a resolution/paramodulation automated theorem prover for first order logic de-
veloped by William McCune. Prover9 system not only contains a prover with graphic user
interface but also includes:

• Mace4: which searches for finite models and counterexamples. In the other words, given
the same input, Prover9 will try to find a proof while Mace4 will attempt to find a
counterexample.

• LARD: which is command line version of Prover9, Mace and other programs. It is also
considered as an interface of Prover9 with other systems such that using a set com com-
mands, other systems can give inputs to Prover9 and then receive outputs.

49

CHAPTER 5. REWRITING TOOL

• Prooftrans: which reads standard proofs returning by Prover9 and converts them in
different ways such as: renumber steps, simplify justifications, expand all steps, turning
secondary justifications into explicit steps, produce proofs in XML and produce proofs
for checking by the IVY proof checker.

Related to the returned proof of Prover9, normal XML with expanding all steps is a good
candidate since we do not have to build a parser for it. However, unification steps are not
explicitly described in this form. Fortunately, Prooftrans of Prover9 also returns an output
containing these steps named Ivy (an example of Ivy output is given in the figure 5.2), which
is actually can be used to check with Ivy proof server. Since this output is just plain text, we
need to build a parser for it with the help of ANTLR.

5.2.3 Espresso

Another task that we have to concern in our tool is simplifying logic formulas since the meth-
ods to compute interpolant mentioned in chapter 3 might return very long formulas which have
many redundant subformulas. In general for first order logic, formula optimization in terms of
numbers of used predicates, variables, connective symbols is a hard problem. Therefore, in this
tool we take into account only the problem of simplifying a propositional logic formula.

In fact, simplifying a propositional logic formula can be reduced to the problem of optimiza-
tion a boolean circuit, which is a crucial problem for digital circuit designing. Among several
approaches to deal with this problem, we select Espresso [5] - a library developed at IBM. To
reduce the complexity of the problem, Espresso uses some specific heuristic algorithms. As a
consequence, the result might not be the global minimal one but in most case it is very close
to the global minimal formula.

5.2.4 Architecture

Figure 5.3: Rewriting tool architecture

Along with the support of the tools mentioned above, we can give 2-layers architecture of
the tool as in the figure 5.3 where the specification of each layer is indicated as follows:

• Presentation layer : This layer provides user interface where users can enter the input and
receive the output. Since the input and output of this tool are not so complicated then
we just need only one form named Rewriting form to handle this task.

• Logic layer : This layer handles all logic operations of the program. It contains the
following modules:

50

CHAPTER 5. REWRITING TOOL

– Parsers: This module does all the parsing task included parsing input formulas,
returned proofs of Prover9 as well as some mediated types of formulas.

– Reasoning module: The main reasoning services such as checking implicit defin-
ability, finding explicit definition, checking consistency, checking safe range are con-
taining in this module. In order to do handle these tasks, this module has to call
services/functions from other modules in the same layer.

– Prover9 interface: As reflected in the name, this module behaves as a communicator
between the tool and Prover9. It creates standard inputs of Prover9, calls to Prover9
and receives responses.

– Espresso interface: Similar to above module, this module connects to Espresso library
and receives answers.

5.2.5 Package diagram

In this subsection we consider the package diagram of the tool corresponding to the above
architecture. This diagram is in the figure 5.4 where:

Figure 5.4: Package diagram

• queryrewriting : is the top package, which contains other packages as well as classes for
user interface such as : QueryRewritingView and QueryRewritingApp.

• queryrewriting.anparser : is the package which contains all generated classes from ANTLR
as well as classes for data structures corresponding to these parsers. It includes: KB parser
for normal formulas, Ivy parser for the ivy output returned by Prover9, CL parser for
Common Logic formula and Interpolant parser for intepolant formulas.

• queryrewriting.kb: is the package including all operations related to knowledge base and
query. It contains: KB and Query classes as well as some operations to create output files
and process input files of the tool.

• queryrewriting.prover9 : is the package containing all classes related to Prover9 such as:
Prover9 class for input, output of Prover 9 and Interpolant class for computing interpolant
from Prover9 outputs.

51

CHAPTER 5. REWRITING TOOL

• queryrewriting.until : is the package which includes some supported services for others
such as: Tree structure and Espresso as mentioned in previous sub sections.

Algorithm 1: Get explicit definition of Q over KB

Input: String KB; String Query
Output: a string: which is an error or the rewritten query
error = parse(KB, Query) ;
if error != null then

return error ;
end
else

error = checkSyntax(KQ, Query) ;
if error != null then

return error ;
end
else

PDB = selectDatabasePredicates(KB) ;
KB’ = createRenameKB(KB, PDB);
Query’ = createRenameQuery(KB, PDB);
imDefine = isImplicitlyDefinable(KB,Q,KB’,Q’);
if !imDefine then

return ‘Query is not implicitly definable’ ;
end
else

proof= getProver9Proof(KB,ground(Q),KB’,ground(Q’)) ;
if proof = empty then

return ‘Cannot rewrite the query’ ;
end
predicateA = getPredicateA(PDB) ;
predicateB = getPredicateB(PDB) ;
interpolant = getInterpolantMatrix(proof,predicateA,predicateB) ;
termA = getMaximalTermA(interpolant);
termB = getMaximalTermB(interpolant);
interpolant = getInterpolant(interpolant, termA, termB) ;
return interpolant ;

end

end

end

5.3 Implementation

In this subsection we shall describe some important algorithms in the tool as well as several
sample blocks of codes.

5.3.1 Algorithms

The first algorithm is introduced here is the general algorithm for our tool where the input
is a string corresponding to knowledge base and a string corresponding to a query; and the
output is an error, information about reason why the query is not rewritten or the rewritten
query. The whole algorithm can be referred from algorithm 1. Notice that, in order to simulate
the scenario where the set of database predicates is a subset of predicates mentioned in KB,
in this algorithm, we use function selectDatabasePredicates over a knowledge base. Moreover,
we also explicit explain the process of making input for Prover9 such as: query Q is implicitly

52

CHAPTER 5. REWRITING TOOL

definable iff KB ∧ KB′ |= ∀X(Q ↔ Q′) and the interpolant is computed from the proof of
KB ∧ ground(Q) → (KB′ → ground(Q′)). In the last part of the algorithm, we consider the
transformation from a relational interpolant to the Craig one according to the method of Huang
mentioned in chapter 3.

The second algorithm taken into account is the algorithm of computing local interpolant of
a resolvent based on interpolants of its resolved clauses. This algorithm 2 stimulates exactly
the method of Huang described in 3.2.3 for this particular case.

Algorithm 2: Get local interpolant for resolution rule

Input: Clause C1 = C ∨ L, Clause C2 = D ∨ ¬L′, predicateA, predicateB
Output: Local interpolant P of C1 and C2

interpolant1 = getInterpolant(C1);
interpolant2 = getInterpolant(C2);
π = getMGU(L,L′);
if L is from predicateA alone then

interpolant = (interpolant1 ∨ interpolant2)π ;
end
if L is from predicateB alone then

interpolant = (interpolant1 ∧ interpolant2)π ;
end
if L is from both predicateA, predicateB then

interpolant = ((¬L′ ∧ interpolant1) ∨ (L ∧ interpolant2))π ;
end
return interpolant ;

5.3.2 Sample codes

Related to implementation, we shall show in this part some blocks of codes such as: how to
create a knowledge base from an input string, how to compute interpolant matrix from a proof
and how to create Craig interpolant from this matrix.
Create a knowledge base

Listing 5.2: An example of ANTLR grammar

1 case NORMAL:
2 try {
3 CharStream stream = new ANTLRStringStream(input) ;
4 KBLexer l e x e r = new KBLexer (stream) ;
5 TokenStream tokenStream = new CommonTokenStream(l e x e r) ;
6 KBParser par s e r = new KBParser (tokenStream) ;
7 KBOutput out = new KBOutput () ;
8 formulas = par s e r . kb (out) ;
9 }

10 /∗ Excepion handle code∗/
11 break ;

Finding interpolant matrix

Listing 5.3: An example of ANTLR grammar

1 St r ing i n t e r p o l an t = ”” ;
2 /∗ Get type code∗/
3 i f (node . getNumberOfChildren () == 0) // Input c l ause
4 {
5 boolean i s InA = isInputA (step) ;
6 i f (i s InA) i n t e r po l an t = ” $ f a l s e ” ;
7 else i n t e r po l an t = ” $true ” ;
8 }
9 else // I f not

10 {

53

CHAPTER 5. REWRITING TOOL

11 switch (type)
12 {
13 case IvyOutput . Type . FLIP :
14 i n t e r p o l an t = f l i p I n t e r p o l a n t (node) ;
15 break ;
16 case IvyOutput . Type . INSTANTIATE:
17 i n t e r p o l an t = i n s t I n t e r p o l a n t (node) ;
18 break ;
19 case IvyOutput . Type .PRO:
20 i n t e r p o l an t = propInte rpo lant (node) ;
21 break ;
22 case IvyOutput . Type .RESOLVE:
23 i n t e r p o l an t = r e s o l v e I n t e r p o l a n t (node) ;
24 break ;
25 case IvyOutput . Type .PARAMOD:
26 i n t e r p o l an t = paramodeInterpolant (node) ;
27 break ;
28 }
29 }
30 InterOutput . Formula f = createInFormulaFromString (i n t e r po l an t) ;
31 return f . t oS t r i ng () ;

Create interpolant from the matrix

Listing 5.4: An example of ANTLR grammar

1 Node node = t r e e . getRootElement () ;
2 S t r ing in = in t e r po l an t (node) ;
3 InterOutput . Formula f = createInFormulaFromString (in) ;
4 /∗ Shorten code us ing Espresso ∗/
5 in = sho r t en In t e rpo l an t (f) ;
6 f = createInFormulaFromString (in) ;
7 /∗ Get and arrange maximal terms code∗/
8 St r ing temp = ”x” ;
9 for (int i= arranged . s i z e () /2 − 1 ; i >= 0 ; i−−)

10 {
11 /∗Replaced term by x i code∗/
12 }
13 for (int i =0; i< arranged . s i z e () / 2 ; i++)
14 {
15 St r ing var = temp + i ;
16 i f ((I n t eg e r) arranged . get (i ∗2 + 1) == 1)
17 {
18 p r e f i x = p r e f i x + ” e x i s t s ” + var + ” (” ;
19 end f i x = end f i x + ”) ” ;
20 }
21 else
22 {
23 p r e f i x = p r e f i x + ” a l l ” + var + ” (” ;
24 end f i x = end f i x + ”) ” ;
25 }
26 }
27 return p r e f i x + s + end f i x ;

5.4 Usage notes

In this first version of the rewriting tool, a simple graphic interface was implemented using
normal user interaction components such as: menu, textbox, combobox, listbox and dialog.

5.4.1 Setup

In order to setup the tool, users should follow below steps:

• Make sure that Java 1.5 (or higher) and Prover9 are installed in your computer.

• Unrar the Package.rar in a folder in your computer.

54

CHAPTER 5. REWRITING TOOL

• Open the rewriting.properties file by a text editor and modify PROVER9 DIR entry
to your the path of Prover9 in your computer.

• Run the rewriting.bat file to start the tool.

After that, the query rewriting window will appear as in the picture 5.5.

Figure 5.5: Query rewriting window

5.4.2 Tool manipulations

1. Open/Save: With these operations users can save their input in a text file or open a
text file which contains input information such knowledge base and query.
Go to File − > Open and select a file to open an input file
Go to File − > Save and choose file name to save (saved information might includes :
knowledge base, query and rewritten query)

2. Input types: There are three types of input formulas contained in the commbobox Type
such as: Normal, TPTP and CLIF. Users can choose one of them. Notice that the input
type and the input should be corresponding to each other, if not, an error will be generated
after parsing.
For syntax of TPTP and CLIF formula, readers can refer to previous sections. For the
syntax of Normal formula, users can see below example :

Example 5.3

all x, y(A(x, y)→ B(y)).

Notice that in normal syntax, constants begin with $ and an upper char while predicates
begin with an upper char and variables begin with a lower char.

55

CHAPTER 5. REWRITING TOOL

3. KB operations: Users can edit the knowledge base on the biggest text box. In order to
check whether the knowledge base is well form, safe range or consistent or not, users just
need to click to corresponding buttons. An dialog of result will be showed immediately
after that.
In order to load the KB into the system, users have to click to Load in button. After
loading, the list of all predicates will appear at the first DB predicates list box. The
second list contains all database predicates. To add a database predicate, users click to
this item in the first list and click (+) button. To remove a database predicate, users click
to this item in the second list and click (-) button.

4. Query operations: Similar to knowledge base, users can edit a query in query text box
and check whether it is well-formed or not by clicking to Well-formed button. To check
whether the query is definable with respect to the knowledge and selected predicates,
users click to Definable button. To rewrite the query, users click to Rewrite button. If a
rewritten one is found, it will be showed up in Rewritten query text pane.
Notice that the syntax checking is included in all operations.

56

Chapter 6
Conclusion and future works

In this thesis we studied a general framework to rewrite a query over a knowledge base and a
set of database predicates. Relied on Craig interpolant theorem and Beth definability for first
order logic, we confirmed that it is possible to construct an explicit definition of a query which is
implicitly definable in theoretical point of view, where interpolant is always constructed from a
proof of validity. Moreover, based on this framework we also clarified some conditions to reduce
the problem of query answering over a knowledge base and a database to the model checking
problem over the database, which actually can be solved by standard relational database tech-
niques. By studying some important decidable fragments of first order logic such as description
logic ALC and its generalization guarded fragment, we made sure that our conditions are not
unambiguous.

Besides, considering the transformation of a first order query to relational one, we did a
research on a crucial property of this transformation named safe range. We pointed out that
having a safe range rewritten query over a safe range knowledge base and safe range query is not
trivially. However, we also showed that it is possible if we add more axioms to the knowledge
base with the meaning that every individual has to belong to some categories.

In practical point of view, we proved that our framework can be incorporated with some
theorem provers in the sense of automated rewriting by implementing a rewriting tool. With
the support of this tool, one will know whether the query is definable or not and if it is the
case a definition might be showed up. Besides, the tool also helps users explore the safe range
property of the rewritten query. As an additional feature, our piece of software supports several
types of popular syntaxes for first order formulas as well in order to exchange results with other
systems in future.

In the rest of this chapter, which is also the last main part of this thesis, we would like to
mention some interesting future works of our research.

6.1 Domain independence

As we mentioned in chapter 4, domain independence of the rewritten query is the essential
property to reduce the problem of general query answering to model checking problem. There-
fore, finding the conditions of knowledge base and original query to have a domain independent
rewritten one is a very important task. We showed that if the knowledge base and query are
safe range then there is a domain independent rewritten query. However, we are still explor-
ing properties of input in order to have a stronger result such as the output is always domain
independent no matter which method is used to compute it.

57

CHAPTER 6. CONCLUSION AND FUTURE WORKS

6.2 Safe range for resolution method

Another open question related to our research is safe range property of rewritten query com-
puted by resolution method. In fact, the prenex form of the interpolant computed based on
resolution proof as in Huang paper (mentioned in 3.2.3) might destroy its safe range property.
Therefore, it might helf if we find an alternative way to compute Craig interpolant for first order
logic which is not in prenex form. Besides, finding a method to transform a prenex formula to
a normal one which has maximal part is safe range is also an interesting approach.

6.3 Optimization

From the practical perspective, we all agree that there might be many rewritten queries of one
original query and the problem of how to get the optimized one in terms of query evaluation is
very important. In fact, one has to take into account which criteria should be used to optimize,
such as: the size of the rewritings, the numbers of used predicates, the priority of predicates
and the number of relational operators.
Moreover, duplication of semantic in rewritings according to knowledge base should be consid-
ered as well, because it does not only affect the query evaluation process but also gives options
to rewrite. For example, consider a simple knowledge base as follows:

all x, y(V (x, y) < − > (x = y)).

all x, y(V 1(x, y) < − > V (x, y)).

and a query V 1(x, y). A rewriting of this query over above knowledge base and database
predicate V might be V (x, y) ∧ (x = y), where its conjuncts are equivalent to each other
according to the knowledge base.

6.4 Decidable fragment

One more interesting topic for future works is exploring more decidable fragments of first order
logic where the framework can be applied. Notice that the balance between the decidable prop-
erty and the expressiveness of knowledge base and queries has to be considered. As mentioned
in [4], we also can check the application of framework where knowledge base is presented in one
fragment and queries are in the different one, such as: description logic knowledge base with
positive first order queries.

58

Appendix A
GUI screenshots

Figure A.1: A successful scenario of the rewriting framework

59

Figure A.2: An example about wrong syntax of input formulas

Figure A.3: An example about correct syntax of output formulas

60

Figure A.4: An example of a consitent knowledge base

Figure A.5: An example of a safe range query

61

Figure A.6: A positive result for Nash’s example in [22]

62

Figure A.7: Rewriting of Nash’s example in [22] and its safe range property

63

Appendix B
Worked out examples

Let us consider the aforementioned example in chapter 1 to demonstrate behaviors of our
rewriting framework. So we have:
The set of predicates: Student (S), GradStudent (G) and UnderGradStudent (U)
The knowledge base (KB) is:

∀x(Student(x)→ (GradStudent(x) ∨ UnderGradStudent(x)))

∀x(GradStudent(x)→ Student(x))

∀x(UnderGradStudent(x)→ Student(x))

∀x(GradStudent(x)→ ¬UnderGradStudent(x))

The database predicates are: Student and UnderGradStudent
The query Q(x) is: GradStudent(x)

B.1 Check definability

First, we will show that the query is definable from database predicates by proving

KB ∧ K̃B → ∀x(Q(x)↔ Q̃(x)) (B.1)

where:
K̃B is:

∀x(Student(x)→ (GradStudent(x) ∨ UnderGradStudent(x)))

∀x(GradStudent(x)→ Student(x))

∀x(UnderGradStudent(x)→ Student(x))

∀x(GradStudent(x)→ ¬UnderGradStudent(x))

Q̃(x) is: ˜GradStudent(x).

Let G1 is a rename of G̃. The following is the proof of B.1 returned by Prover9:

Listing B.1: An example of ANTLR grammar

1 (a l l x (S(x) −> G(x) | U(x))) # label (non c lause) . [assumption] .
2 (a l l x (G(x) −> S(x))) # label (non c lause) . [assumption] .
4 (a l l x (G(x) −> −U(x))) # label (non c lause) . [assumption] .
5 (a l l x (S(x) −> G1(x) | U(x))) # label (non c lause) . [assumption] .
6 (a l l x (G1(x) −> S(x))) # label (non c lause) . [assumption] .
8 (a l l x (G1(x) −> −U(x))) # label (non c lause) . [assumption] .
9 (a l l x (G(x) <−> G1(x))) # label (non c lause) # label (goa l) . [goa l] .

64

10 −G(x) | S(x) . [c l a u s i f y (2)] .
11 −S(x) | G(x) | U(x) . [c l a u s i f y (1)] .
13 −S(x) | G1(x) | U(x) . [c l a u s i f y (5)] .
14 −G1(x) | S(x) . [c l a u s i f y (6)] .
16 G(c1) | G1(c1) . [deny (9)] .
17 −G(x) | −U(x) . [c l a u s i f y (4)] .
18 −G(c1) | −G1(c1) . [deny (9)] .
19 G1(x) | U(x) | −G(x) . [r e s o l v e (13 , a , 1 0 , b)] .
20 −G1(x) | G(x) | U(x) . [r e s o l v e (14 ,b , 1 1 , a)] .
21 G1(c1) | U(c1) | G1(c1) . [r e s o l v e (19 , c , 1 6 , a)] .
22 −G1(x) | −U(x) . [c l a u s i f y (8)] .
23 G1(c1) | −U(c1) . [r e s o l v e (16 , a , 1 7 , a)] .
24 −G1(c1) | U(c1) | −G1(c1) . [r e s o l v e (20 ,b , 1 8 , a)] .
25 G1(c1) | G1(c1) | G1(c1) . [r e s o l v e (21 ,b , 2 3 , b)] .
26 G1(c1) . [copy (25) , merge (b) , merge (c)] .
27 −G1(c1) | −G1(c1) | −G1(c1) . [r e s o l v e (24 ,b , 2 2 , b)] .
28 $F . [copy (27) , merge (b) , merge (c) , u n i t d e l (a , 2 6)] .

B.2 Compute interpolant

B.2.1 Resolution based method

Now we compute interpolant of KB ∧ Q(c) and K̃B → Q̃(c) based on the resolution proof of

(KB ∧Q(c))→ (K̃B → Q̃(c)) as follows:

−G(x) ∨ S(x)[⊥] −S(x) ∨G1(x) ∨ U(x)[>]

G1(x) ∨ U(x) ∨ −G(x)[S(x)] G(c)[⊥]

G1(c) ∨ U(a)[S(c)] −G1(c)[>]

U(c)[S(c)]

G(c)[⊥] −G(x) ∨ −U(x)[⊥]

−U(c)[⊥]

F [−U(c)∧S(c)]

where clause[I] means I is local interpolant of clause
Then, S(c) ∧ ¬U(c) is our desirable interpolant

B.2.2 Tableau based method

In tableau based method, we start with the initial set of biased formulas:

S0 = {L(∀x(S(x)→ (G(x) ∨ U(x)))),

L(∀x(G(x)→ S(x))),

L(∀x(U(x)→ S(x))),

L(∀x(G(x)→ ¬U(x))),

L(G(c)),

R(∀x(S(x)→ (G1(x) ∨ U(x)))),

R(∀x(G1(x)→ S(x))),

R(∀x(U(x)→ S(x))),

R(∀x(G1(x)→ ¬U(x))),

R(¬G1(c))}

65

Apply the rule for ∀ and remove implication, we have:

S1 = {L(¬S(c) ∨G(c) ∨ U(c)), (B.2)

L(¬G(c) ∨ S(c))), (B.3)

L(¬U(c) ∨ S(c)), (B.4)

L(¬G(c) ∨ ¬U(c)), (B.5)

L(G(c)), (B.6)

R(¬S(c) ∨G1(c) ∨ U(c)), (B.7)

R(¬G1(c) ∨ S(c)), (B.8)

R(¬U(c) ∨ S(c)), (B.9)

R(¬G1(c) ∨ ¬U(c)), (B.10)

R(¬G1(c))} (B.11)

where interpolant of S1 can be computed as follows:

S4 ∪ {R(¬S(c)}S(c) S4 ∪ {R(U(c))}¬U(c)

S4 = S3 ∪ {R(¬S(c) ∨ U(c))}(S(c)∧¬U(c))
∨

S3 ∪ {R(G1(c))}>

S3 = S2 ∪ {L(¬U(c))}(S(c)∧¬U(c))
B.7

S2 ∪ {L(¬G(c))}⊥

S2 = S1 ∪ {L(S(c))}(S(c)∧¬U(c))
B.5

S1 ∪ {L(¬G(c))}⊥

S
(S(c)∧¬U(c))
1

B.3

Notice that the notion of setI is coincident with the notion of set −→ I as in 3.2.1. Therefore
S(c) ∧ ¬U(c) is the interpolant that we need to compute.

B.3 Get rewriting

By replaceing constant c with variable x, we have Q̂(x) = Student(x)∧¬UnderGradStudent(x)

66

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] ANTLR. Another tool for language recognition. http://www.antlr.org/, 2005.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[4] Alex Borgida, Jos Bruijn, Enrico Franconi, Inan Seylan, Umberto Straccia, David Toman,
and Grant Weddell. On finding query rewritings under expressive constraints, 2009.

[5] Robert Brayton. Espresso. http://embedded.eecs.berkeley.edu/pubs/downloads/

espresso/index.htm, 1993.

[6] CASC. The world championship for automated theorem proving. http://www.cs.miami.
edu/~tptp/CASC/, 2010.

[7] Chen Chung Chang and Jerome Keisler. Model Theory. Number 73 in Studies in Logic
and the Foundations of Mathematics. North-Holland, 1973. Third edition, 1990.

[8] Jan Chomicki. Database consistency: Logic-based approach, slides. http://www.cse.

buffalo.edu/~chomicki/talks-bolzano08.pdf, 2008.

[9] William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. J. Symb. Log., 22(3):269–285, 1957.

[10] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[11] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1996.

[12] Enrico Franconi. Using first order logic, slides for description logic course. http://www.

inf.unibz.it/~franconi/dl/course/slides/logic/fol/fol-2.pdf, 2009.

[13] Dov Gabbay and Larisa Maksimova. Interpolation and Definability Volume1. Clarendon
Press, 2004.

[14] E. Hoogland. Definability and Interpolation: Model-theoretic investigations. PhD thesis,
2001.

[15] Eva Hoogland, Maarten Marx, and Martin Otto. Beth definability for the guarded frag-
ment. In LPAR ’99: Proceedings of the 6th International Conference on Logic Programming
and Automated Reasoning, pages 273–285, London, UK, 1999. Springer-Verlag.

67

http://www.antlr.org/
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
http://www.cs.miami.edu/~tptp/CASC/
http://www.cs.miami.edu/~tptp/CASC/
http://www.cse.buffalo.edu/~chomicki/talks-bolzano08.pdf
http://www.cse.buffalo.edu/~chomicki/talks-bolzano08.pdf
http://www.inf.unibz.it/~franconi/dl/course/slides/logic/fol/fol-2.pdf
http://www.inf.unibz.it/~franconi/dl/course/slides/logic/fol/fol-2.pdf

[16] Guoxiang Huang. Constructing craig interpolation formulas. In COCOON ’95: Proceedings
of the First Annual International Conference on Computing and Combinatorics, pages 181–
190, London, UK, 1995. Springer-Verlag.

[17] IBM. Query rewriting methods and examples. http://publib.boulder.ibm.com/

infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0005293.

htm, 2009.

[18] ISO. Iso standard for common logic. http://www.iso.org/iso/catalogue_detail.htm?
csnumber=39175, 2007.

[19] Alexander Leitsch. The resolution calculus, alexander leitsch. J. of Logic, Lang. and Inf.,
7(4):499–502, 1998.

[20] Roger C. Lyndon. An interpolation theorem in the predicate calculus. Pacific J. Math.,
1:129–142, 1959.

[21] K. L. Mcmillan. Interpolation and sat-based model checking. pages 1–13. Springer, 2003.

[22] Alan Nash, Luc Segoufin, and Victor Vianu. Determinacy and rewriting of conjunctive
queries using views: A progress report. In ICDT, pages 59–73, 2007.

[23] Andrei Popescu, Traian Florin erbnu, and Grigore Rou. A semantic approach to interpo-
lation. Theor. Comput. Sci., 410(12-13):1109–1128, 2009.

[24] Pavel Pudlk. Lower bounds for resolution and cutting plane proofs and monotone compu-
tations, 1996.

[25] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[26] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with ontologies
over dboxes. In IJCAI, pages 923–925, 2009.

[27] tptp. The tptp problem library for automated theorem proving. http://www.cs.miami.

edu/~tptp/, 2010.

[28] WIKI. Data integration. http://en.wikipedia.org/wiki/Data_integration, 2010.

[29] Lawrence Wos, Daniel Carson, and George Robinson. The unit preference strategy in
theorem proving. In AFIPS ’64 (Fall, part I): Proceedings of the October 27-29, 1964, fall
joint computer conference, part I, pages 615–621, New York, NY, USA, 1964. ACM.

[30] Lawrence Wos, George A. Robinson, and Daniel F. Carson. Efficiency and completeness
of the set of support strategy in theorem proving. J. ACM, 12(4):536–541, 1965.

68

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0005293.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0005293.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0005293.htm
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39175
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39175
http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/
http://en.wikipedia.org/wiki/Data_integration

	Introduction
	Motivations
	Previous works
	Contribution of the Thesis
	Organization of the Thesis

	Preliminaries
	First order logic
	Syntax
	Semantic
	Normal forms

	Theorem proving in First order Logic
	Tableaux
	Resolution with unification

	Description logic
	Syntax
	Semantic
	Reasoning in Description Logic

	Database and Query
	Database and constraints
	Query
	Domain Independence
	Safe range

	Interpolant
	Craig's interpolant
	The theorem
	The proof
	Related theorems

	Constructing Craig's interpolant
	Tableaux based method
	Interpolation for ALC concepts
	Resolution based methods

	Query rewriting framework
	General framework
	Definability of a query
	Query rewriting
	Query answering

	Safe range rewriting
	Ground safe range
	Tableau based rewriting
	From ground safe range to safe range

	Applied framework for ALC
	DBox
	The framework
	Ground safe range theorem

	Applied framework for guarded fragment

	Rewriting tool
	Requirements
	System features
	External interface requirements
	TPTP syntax
	Common Logic syntax

	Design and support tools
	Logic formula parser
	Prover9
	Espresso
	Architecture
	Package diagram

	Implementation
	Algorithms
	Sample codes

	Usage notes
	Setup
	Tool manipulations

	Conclusion and future works
	Domain independence
	Safe range for resolution method
	Optimization
	Decidable fragment

	GUI screenshots
	Worked out examples
	Check definability
	Compute interpolant
	Resolution based method
	Tableau based method

	Get rewriting

	Reference

